
1

1

GD 4
Scrolling Background

The Falling Dot in GD 3 had costumes that would change after every successful click by the
player. After 3 points were achieved, the background would “scroll” to the right and switch
scenes. This was an introduction to side scrolling game.

In this lesson, we learn why side scrolling games are important and then use VIEW
FRAME to implement side scrolling. When done, our Pac Man can run left and right while
deceiving the player.

Running Pac Man – let’s use deception to make our Pac Man run sideways.

1. Video game industry crash 2. Side scrolling game. 3. Run left and right

0. DECEPTION

Did you know that you are being deceived? Video games are all about deceiving the player
into thinking one thing while the reality is opposite. One of the most important video games is
Super Mario Bros. This game helped save the video game industry and brought it back to the
fore front.

Source: https://supermariobros.io/data/image/super-mario-bros.png

2

2

0.1. POWERFUL ARCADE BOXES

Traditionally, video games are found in shopping malls in the form of arcade boxes. They used
to be popular in the US and are still popular in Japan. In the early eras of video game
development, entertainment meant that expensive and big hardware components were needed
to be able to process the game play and graphics. This is why arcade boxes had all the big
graphic intensive games.

Source: https://www.recroommasters.com/v/vspfiles/photos/RM-XT-32-PRO-EE-2T.jpg

0.2. PROBLEM : BIG AND BULKY

Arcade boxes housed powerful hardware components that were needed to handle the game
play and graphics that many people desired. However, the problem with arcade boxes is that
they are big, bulky, and expensive.

3

3

Who can afford it? NOT the average consumer

Where do you put it? Arcade boxes are huge and take up a lot of real estate.

Where does the energy come from? Intensive game play and graphics requires a lot of
energy. The average consumer does not want to pay that type of money

How often is it used? A big, bulky, and expensive arcade box is a big investment that only
pays off if it is used often. The average consumer might be too occupied with school and work
and this prevents daily use.

From the above, the game industry did crash due to low demand.

0.3. SIMPLE IS ALWAYS BEST

0.3.1. GAMEPLAY

So, how did the video game industry recover? People began to realize that video
games can still be fun if the game play has the following attributes
1. goals are simple to understand
2. simple to achieve
3. has repetitive actions (this promotes mastery)
4. breaking a video game into levels promotes achievement in incremental steps.

0.3.2. RENDER

With game play taken care of, how can video game developers simplify the
rendering (or drawing) of video game objects? The simple answer is to deceive
the player and Super Mario Bros. did this very well.

Look at the game play of Super Mario Bros and ask yourself, is Mario actually
moving? If so, then answer the questions below
1. What direction is Mario moving in?
2. What direction is the background moving in?
3. What direction are the enemies moving in?

Based on the answers from above, we do realize that Mario is not actually moving.
The game play made it look like Mario is moving and this deception is called side
scrolling game.

4

4

0.3.3. VIEW FRAME

In order to create a side scrolling game, we need a VIEW FRAME. This VIEW FRAME is
a box that only partially shows the entire background and this is part of the deception.

The game character moves the VIEW FRAME left or right based on the arrow keys on
your keyboard. The character is centered in the VIEW FRAME.

However, the character does not move and is static (meaning the character
doesn’t move). Instead, the VIEW FRAME moves left and right and the changing
background gives the perception of a character moving.

0.4. SIDE SCROLLING GAME

This type of game simplifies game play and rendering by making the main
character the focal point. This means that the main character is like the sun and
everything and everyone revolves around that main character.

Since the main character is the focal point, he/she is static and stays in the same (x,y)
position the entire game. To make it look like the main character is moving, we simply
scroll the background sideways and this is why it is called a side scrolling game.

0.4.1. RULE OF OPPOSITE

To make Mario run to the right, we have the background scroll in the opposite direction,
which is to the left.

0.4.2. COSTUME CHANGE → MORE DECEPTION

In the last project, GD 3, we focused on using arrays to store costumes and then using a
digital key to select a costume within the array. To make Mario look like he is running,
we load different costumes in an array and each costume shows Mario moving his legs.

5

5

If we quickly change costumes, the background scrolls left and Mario’s legs change
positions. This gives the effect of Mario running to the right.

0.5. Recovery

Using a VIEW FRAME and static game character was important because it
became a standard way of making video games. So, instead of having to figure
out what works and what doesn’t work, developers have a side scrolling style
game that DOES work and is simple to use.

Now that the foundation building block has been set, developers can focus on
adding more block on top.

1. ARROW KEY ACTIVATES SCROLL - EVENT LISTENER

Write the code below in between <script> </script>. The large, green banner is

your landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

/* == /* == /* == /* ==
*Arrow keys event listener *Arrow keys event listener *Arrow keys event listener *Arrow keys event listener

* ===*/* ===*/* ===*/* ===*/
windowwindowwindowwindow.addEventListener("keydownkeydownkeydownkeydown", check_keycheck_keycheck_keycheck_key);

Explanation

The code in green is an event listener and this is how JS listens for events and then acts. In our

case, we are saying that the window, which is your entire website, should “listen” for a
depression of the keyboard.

When this event does happen, the code in blue is the event handler (which is our reaction to
the event).

6

6

2. EVENT HANDLER (OUR REACTION)

Write the code below in between <script> </script>. The large, green banner is

your landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

/* ======================================/* ======================================/* ======================================/* ======================================
* Check key* Check key* Check key* Check key

* ===========* ===========* ===========* ======================================= */============================ */============================ */============================ */
function check_key(e)
{
 console.log("e.key: " + e.key);

 /* ===
 Why does going up mean subtracting by 10?

 */
 switch(e.key)
 {
 // --
 case 'w': move_left_paddle(-50);
 break;

 // --
 case 's': move_left_paddle(50);
 break;

 // --
 case 'o': move_right_paddle(-1 * p2YOffset);
 break;

 // --
 case 'l': move_right_paddle(p2YOffset);
 break;

 // -- space bar
 case " ": console.log("space bar was pressed");
 p1LF = 1;
 //audioDOM.play();
 console.log("(((((done playing audio effect))))))");
 break;

 // -- up arrow
 case "ArrowUp": console.log("^^^^^^^^ arrow up ^^^^^^");
 p1JF = 1;
 costumeNum = 0;
 break;

7

7

 // // // // -------- right arrowright arrowright arrowright arrow
 case "case "case "case "ArrowRight": console.log("&&&& arrow right ArrowRight": console.log("&&&& arrow right ArrowRight": console.log("&&&& arrow right ArrowRight": console.log("&&&& arrow right &&&&&");&&&&&");&&&&&");&&&&&");
 panDirNS = 1;panDirNS = 1;panDirNS = 1;panDirNS = 1;
 panROffset panROffset panROffset panROffset = .5;= .5;= .5;= .5;
 panRLim panRLim panRLim panRLim = 150;= 150;= 150;= 150;
 costumeNum = 2;costumeNum = 2;costumeNum = 2;costumeNum = 2;
 break; break; break; break;

 // -- left arrow
 case "ArrowLeft": console.log("$$$ arrow left $$$");

 break;

 // -- down arrow
 case "ArrowDown": console.log("///arrow down////");
 panDirNS = 0;
 panLOffset = 0;
 panLLim = 0;

 break;

 // -- safety net
 default: console.log("nothing happened");

 }

}

Explanation

The event handler code from above will first determine which key was pressed down by the
player. We use the switch statement to map a key to an action.

In the code in blue, “ArrowRight” is mapped to the code that changes the x position of the
background image and this is how we implement the scrolling.

When the game starts, the x position of the background image is 0. When we press on the right
arrow key on the keyboard, the code will add 5 to the x position of the background image. The
result is that we are swiping left a little bit and the background goes to the right.

8

8

3. SCROLL TO X POSITION – LEVEL 1 ���� INPUT COMMAND

Write the code below in between <script> </script>. The large, green banner is

your landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

/* ==================================/* ==================================/* ==================================/* ==================================
* Background image* Background image* Background image* Background image

* =================================== */* =================================== */* =================================== */* =================================== */
panDirCS = panDirNS;

// // // // -------- scroll rightscroll rightscroll rightscroll right
if(panDirCS == 1)if(panDirCS == 1)if(panDirCS == 1)if(panDirCS == 1)
{

panOffsetCS = panROffset;
panLimCS = panRLim;

 // -- since changing direction, reset the scroll left vars
 panLOffset = 0;
 panLLim = 0;

}
// // // // -------- scroll leftscroll leftscroll leftscroll left
else if(panDirCS == else if(panDirCS == else if(panDirCS == else if(panDirCS == ----1)1)1)1)
{

panOffsetCS = panLOffset;
 panLimCS = panLLim;

 // -- since changing direction, reset the scroll right vars
 panROffset = 0;
 panRLim = 0;

}
// -- user pressed on down arrow key, stop
else
{

panDirCS = 0;
 panDirNS = 0;

 panROffset = 0;
 panRLim = 0;

 panLOffset = 0;
 panLLim = 0;

}

// // // // --------
if(panLimCS > 0)if(panLimCS > 0)if(panLimCS > 0)if(panLimCS > 0)
{{{{

clipX += panOffsetCS * panDirCS;clipX += panOffsetCS * panDirCS;clipX += panOffsetCS * panDirCS;clipX += panOffsetCS * panDirCS;
panLimCS panLimCS panLimCS panLimCS ----= .5;= .5;= .5;= .5;

}}}}

9

9

Explanation

In the code above, we are working on level 1, which is to set the input commands.

Remember the switch statement that was written in step 2? Look back and see that it was
used to choose which direction to scroll, either left or right.

The orange “if” statement checks if the user wants to scroll right, which would be a code
number of 1. If so, then set the input commands to make the background image scroll right.

However, if the code number is -1, then we want to scroll left and the blue “if” statement sets
the input command to make the background image scroll right.

Finally, the code in purple will continue to scroll the background until the desired x position is
reached.

4. BACKGROUND SCROLL – LEVEL 2 ���� DRAWING

Write the code below in between <script> </script>. The large, green banner is

your landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

/* ==================================/* ==================================/* ==================================/* ==================================
* Draw background* Draw background* Draw background* Draw background

* =================================== */ * =================================== */ * =================================== */ * =================================== */
ctx.beginPath();

ctx.drawImagectx.drawImagectx.drawImagectx.drawImage(img, clipX, clipY, clipW, clipH, imgX, imgY, imgW, imgH);
ctx.fill();

Explanation

In the previous game development, GD 3, we drew a background image and this background
image scrolls to the right when a score of 3 or more is achieved. This was our first look at a side
scrolling game.

The previous section added 5 to the x position of the background and this was level 1 -
setting variables to be used as input commands.

The code in green above is level 2, which is the actual drawing. The code in green above

uses the variables as input commands to the drawing function named ctx.drawImage()ctx.drawImage()ctx.drawImage()ctx.drawImage(),,,,
which will draw on our behalf.

10

10

HTML CHALLENGE

Pick an image from the internet and use it as your background.

Look for an image and change the code in red

<!<!<!<!-------- ============================ ============================ ============================ ============================
* * * * CanvasCanvasCanvasCanvas

* =============================== * =============================== * =============================== * =============================== -------->>>>
<img id="gameBG"
src="http://vuongducnguyen.com/images/gamebackground.jpghttp://vuongducnguyen.com/images/gamebackground.jpghttp://vuongducnguyen.com/images/gamebackground.jpghttp://vuongducnguyen.com/images/gamebackground.jpg"
alt="gameBG" width="600" height="500">

JS CHALLENGE 2

You don’t have to use Pac Man. Pick an image from the internet to be used as your main
character and change the code in red.

/* =========================/* =========================/* =========================/* =========================
* Main character * Main character * Main character * Main character

* ========================== */ * ========================== */ * ========================== */ * ========================== */
pImg = new Image();
pImg.src = "http://vuongducnguyen.com/images/packM.pnghttp://vuongducnguyen.com/images/packM.pnghttp://vuongducnguyen.com/images/packM.pnghttp://vuongducnguyen.com/images/packM.png";
costumeArr.push(pImg);
costumeNum = 1;
costumeOffset = 109;
hangTimeCount = 0;
intervalCount = 0;

JS CHALLENGE 3

Go back to the event handler code and add a case for “ArrowLeftArrowLeftArrowLeftArrowLeft”. This time, we are going
in the opposite direction, so is that plus or minus 5?

JS CHALLENGE 4

We got the background to scroll at the same speed. This is ok but it means that our
character will always be walking. What happens if an enemy is running towards us and our
character can only walk? The enemy has a feature that we don’t have and that feature is
running.

Implement running so that your character can also run away from the enemy. Look at the

“ArrowRightArrowRightArrowRightArrowRight” switch case and make changes to the right side of the colon. The right side of

11

11

the colon has variables that are used as input commands and changing the input
commands changes the behavior of the scrolling.

JS 4.1. Modify the code so that every time the player presses down on the right arrow
key, the background will scroll faster

HINT: how does a variable add onto itself?

JS CHALLENGE 5

Repeat JS Challenge 4 and do the same for the “ArrowLeftArrowLeftArrowLeftArrowLeft” case

