
1

1

GD 3
Costumes For You

The Falling Dot in GD 2 was simply a circle. It would be nice if we could change the look of
the falling dot so that a costume is used as a skin. Programming languages have an array as
a group of storage elements. We could use arrays to store the different costumes and then
choose a single costume for use by using a variable as a digital key.

Game Falling Dots With Costumes – a dot can change position and color. In this lesson, we
will focus on changing the costume of the falling dot and we will use it array to implement
costume change.

1. Array 2. Array manipulation 3. Digital key 4. .push().push().push().push() into array

0. ORGANIZATION OF GAME OBJECTS

0.1. Situation

Currently, the falling dot can change colors but doesn’t have a costume. Let’s
customize our falling dot to have a costume and we get to change the costume
when the player successfully clicks on the hit box of the dot.

Remember in Scratch, our game sprite can have multiple costumes. How can we
implement a costume feature so that we can pick which costume to use by looking at the
costume number? The answer is to use an array and the lesson on array is below.

Another way to think about it is that an array is basically a line.

When a staff member is done helping one person in line, the staff member will move
onto the next position and help the person in that position. So, if the staff member is
done helping the person in position 0, the staff member will then move to the next
position in the line (the next position after 0 is position 1) and help the person in
position 1. The position that the staff member is on is called the index.

2

2

Notice that an array is a group of neighboring memory elements and the word
"neighboring" means that each memory element within the array is in sequential order (
0, 1, 2, 3, and etc). The order ALWAYS starts at number 0.

With an array, we access the array by using a special format.

arrayName[index];

The total length of the array can be found by using arrayName.length.

The first index is always 0 and the last index is arrayName.length - 1

 lineAtBank[0]

 lineAtBank.length - 1

 lineAtBank.length

3

3

0.2. access group using array name

Since all memory elements are in the same group, we can move all memory elements of
the group by simply using the name of the array.

var lineAtBank = ['a', 'b', 'c', 'd', 'e'];

var myArr = lineAtBank;

The code above transfers the ENTIRE CONTENT of the array named lineAtBank into
the array named myArr. The key operation is the assignment operator, which is used to
transfer data from the right side of the assignment operator to the left side of the
assignment operator.

0.3. access single element using square bracket

What if we want to access ONLY A SINGLE MEMORY ELEMENT within the array? The
answer is to use square brackets, which look like this []

lineAtBank[1] = 'v';

The square brackets are used to select ONLY A SINGLE MEMORY ELEMENT within
the array. Inside the square brackets is the index (ie. inside the square brackets is the
position in the line we are currently on).

a. The code above uses square brackets to select index 1 of the array � the
code above means we are at position 1 and putting the data ‘v’ into position 1.

After the line of code above is finished executing, the content of the array named
dataGroup is updated to be var lineAtBank = ['a', var lineAtBank = ['a', var lineAtBank = ['a', var lineAtBank = ['a', 'v''v''v''v', 'c', 'd', 'e'];, 'c', 'd', 'e'];, 'c', 'd', 'e'];, 'c', 'd', 'e'];

0.4. get data from a single array index

4

4

0.5. put data into a single array index

0.6. digital key

All of the examples from above put a number inside the square bracket. This is called a
hardcoded index. We can't change the index because we are not using a variable.

lineAtBank[0]

Can we replace the number with a variable and make a generic index? The answer is
yes and using variable as a generic index makes the variable a digital key.

var pos = 0;

lineAtBank[pos] = 'v';

pos +=1;

lineAtBank[pos] = 'z';

Explanation

The variable pos has the value of 0 stored inside of it. The code above puts the data 'v'
into the memory element at the index found in variable pos. So, we are putting the data

'v' into the memory element at index 0. Since we are using the variable pos as an

index, then pos becomes a digital key.

Next, we use the special ability of a variable to retain information and use this ability to
perform index manipulation. Variables store data and retains data until new data is
loaded into it. We execute the line of code pos += 1, which add 1 to the current value

of pos. The variable pos has the value of 0 inside of it and we add 1 to it.

So now, 0 + 1 = 1. We then store the new value of 1 into pos using the assignment

operator. The variable pos now has the value of 1 stored inside of it. We then use pos

at an index and put the data 'z' into memory element at
index 1.

5

5

0.7. reading a “for” loop using an array

Array Review

var myTabs = ["Home", "Projects", "Resume", "College"];

1. what is the first index number?
2. what is the data stored inside index 0?
3. what is the length of the array? Give a math equation instead of a number.

4. how do I select ONLY ONE array element?

6

6

1. COSTUME ARRAY

Write the code below in between <script> </script>. The large, green banner is
your landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

/* /* /* /* ==
* varibles for costume array and index* varibles for costume array and index* varibles for costume array and index* varibles for costume array and index

* === */* === */* === */* === */
var
dotImgArr = [], // -- empty array
costumeIndex;

Explanation

In the code above, we are declaring an array that is named dotImgArrdotImgArrdotImgArrdotImgArr and making it an empty
array. The square bracket on the right side with nothing in between means empty array. We will
fill in this empty array with costumes later on.

Next, we declare another variable named costumeIndexcostumeIndexcostumeIndexcostumeIndex and it will be used as a digital key.
Remember, a digital key is a marker of our position within the array.

2. PUSH INTO ARRAY

Write the code below in between <script> </script>. The large, green banner is
your landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

/* =======================================/* =======================================/* =======================================/* =======================================
* Push costume into array* Push costume into array* Push costume into array* Push costume into array

==*/==*/==*/==*/
costumeIndex = 0;

var imgObj = new Image();
imgObj.src = "https://vuongducnguyen.com/images/asteroid.png";
dotImgArr.push.push.push.push(imgObj);

imgObj = new Image();
imgObj.src = "https://vuongducnguyen.com/images/packM.png";
dotImgArr.push.push.push.push(imgObj);

imgObj = new Image();
imgObj.src = "https://vuongducnguyen.com/images/green_line.png";
dotImgArr.push.push.push.push(imgObj);

7

7

Explanation

From Step 1, we created an empty array. How do we put data into an array? There are many
ways to accomplish this. For the code above, the .push.push.push.push()()()() method is used to put data into an
array. The .push.push.push.push()()()() method is a special function because it puts data into the array in
sequential order and the data is put into the array at the end. This is equivalent to getting in
line at the end (getting in line at the front is cutting � BAD!!!)

What does this mean? It means that data is put into the array at the next available position.
So, if our current position is 0 and we then perform a .push.push.push.push()()()(), then the data is put into the next
available position. Since position 0 is taken, this means that the next available position is
1. So, the data is put into the array at position 1.

3. NEW COSTUME

Write the code below in between <script> </script>. The large, green banner is
your landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

/* ======================================/* ======================================/* ======================================/* ======================================
* Player catch dot and gets new costume* Player catch dot and gets new costume* Player catch dot and gets new costume* Player catch dot and gets new costume

==/*==*/*==*/*==*/
costumeIndex++;costumeIndex++;costumeIndex++;costumeIndex++;
if(costumeIndex >= dotImgArr.length)if(costumeIndex >= dotImgArr.length)if(costumeIndex >= dotImgArr.length)if(costumeIndex >= dotImgArr.length)
{{{{

costumeIndex = 0;costumeIndex = 0;costumeIndex = 0;costumeIndex = 0;
}}}}

Explanation

If a player moves the mouse cursor over to the falling dot and then clicks on it while it is falling,
the mouse’s (x,y) position coordinate is within the hit box of the falling dot. This is a successful
hit and the falling dot will change costumes. The code in blue changes the position marker to
the next costume.

For example, if costumeIndexcostumeIndexcostumeIndexcostumeIndex has the value of 1, then after the code in blue executes, then
costumeIndexcostumeIndexcostumeIndexcostumeIndex will have a value of 2. This means that we are selecting costume at position 2
for use.

An array is important because it holds the available costume for use. We don’t have an
infinite number of costumes. Instead, we only use the costumes that are already stored within
the array named dotImgArrdotImgArrdotImgArrdotImgArr.

If we use every costume within the array, then we go back to costume 0. The code in color
orange checks if we have used every costume in the array. If so, then choose costume 0 by
loading the value of 0 into the position marker (or digital key) named costumeIndexcostumeIndexcostumeIndexcostumeIndex.

8

8

4. USE COSTUME USING DIGITAL KEY “costumeIndexcostumeIndexcostumeIndexcostumeIndex”

Write the code below in between <script> </script>. The large, green banner is
your landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

/* =========================/* =========================/* =========================/* =========================
* falling rain * falling rain * falling rain * falling rain

*=========================== */*=========================== */*=========================== */*=========================== */
cYPos -= cYStep * cYDir;

ctx.fillStyle = cColor;
ctx.beginPath();

ctx.drawImage(ctx.drawImage(ctx.drawImage(ctx.drawImage(dotImgArrdotImgArrdotImgArrdotImgArr[[[[costumeIndexcostumeIndexcostumeIndexcostumeIndex], cXPos,], cXPos,], cXPos,], cXPos, cYPos, cRad*2, cRad*2);cYPos, cRad*2, cRad*2);cYPos, cRad*2, cRad*2);cYPos, cRad*2, cRad*2);
ctx.fill();

Explanation

The code in green draws the falling dot as an image. From Step 2, we put 3 images into the
array and so which image is currently being used? Remember that an array is a group of
storage elements. How do we pick ONE ELEMENT of the array? We use square brackets.
The number between the square brackets is the costume number that is chosen.

We are using a position marker (or digital key) of costumeIndex to select a costume.

Remember that if we don’t use a position marker and write dotImgArrdotImgArrdotImgArrdotImgArr[[[[3333]]]], then we are stuck
at costume 3 forever.

However, if we use a position marker, then we can put new data into the variable and that
allows us to use the variable as a position marker to choose different costume numbers.

JS Challenge

1. Go back to Step 2 and use .push() to add more costumes into the array. Use the image

link https://vuongducnguyen.com/images/ to select a costume and use .push() to put the
costume into the array.

2. Add 3 more costumes into the array

3. Test the game and see if the costumes appear

