
GD 20
Rock Climbing, Part 1

We went from variable to arrays and then to classes and objects. In this project, we will combine
all 3 topics together. This means that we will create one or many objects and then store the
newly created object into an array. Since an array is a group of memory elements and it is like a
line, the game objects are more organized and this is much better than having many variables
scattered around. Next, we will use the square brackets to select one element of the array and
then use the member access operator to access a private variable or function of the chosen
object. We can efficiently update all game objects by combining all 3 together inside a “for” loop.

Rock Climbing. How well do you know California? The goal of Rock Climbing is to start at the
bottom and climb up to the top. The Rock Climber makes it up to the top by matching the
question with 1 of 4 possible answers. The Rock Climber can get into position to choose one of
the answers by zip lining sideways or vertically.

1. arrays 2. class definition 3. “this.” versus object name

1. Write the code below in between <script> </script>. The large, green banner is your

landmark. Go to the coding website and look for it. Next, write the code below
underneath the large, green banner. Write all of it, color code is for explanation.

 /* =======================================/* =======================================/* =======================================/* =======================================
 * QA class* QA class* QA class* QA class
 * == */* == */* == */* == */
 class QAclass QAclass QAclass QA
 {{{{
 consconsconsconstructor(question, answer)tructor(question, answer)tructor(question, answer)tructor(question, answer)
 {{{{
 this.quest = question;this.quest = question;this.quest = question;this.quest = question;
 this.an = answer; this.an = answer; this.an = answer; this.an = answer;
 }}}}

 check_if_matching(uAnswer)check_if_matching(uAnswer)check_if_matching(uAnswer)check_if_matching(uAnswer)
 {{{{
 console.log(“#1”);console.log(“#1”);console.log(“#1”);console.log(“#1”);
 return (this.an == uAnswer) ? 1 : 0;return (this.an == uAnswer) ? 1 : 0;return (this.an == uAnswer) ? 1 : 0;return (this.an == uAnswer) ? 1 : 0;

 }}}}

 get_qa_pair()get_qa_pair()get_qa_pair()get_qa_pair()
 {{{{
 console.log(“#2);console.log(“#2);console.log(“#2);console.log(“#2);
 return { q: this.quest, a: this.an };return { q: this.quest, a: this.an };return { q: this.quest, a: this.an };return { q: this.quest, a: this.an };

 }}}}

 // // // // -------- JS Challenge 1JS Challenge 1JS Challenge 1JS Challenge 1

 }}}}

Explanation

The code above is the class definition for QA, which stands for question and answer. The class
definition has 2 private variables and they are named this.questthis.questthis.questthis.quest and this.anthis.anthis.anthis.an. Remember
that in Javascript, we define private variables inside the constructor and we put “this.this.this.this.” in front
of the variable name.

The class definition also has two private functions (the constructor doesn’t count as a private
function). We know that this.questthis.questthis.questthis.quest and this.anthis.anthis.anthis.an and the two private functions belong to
class QA because they are all inside the open and closing curly braces of class QA.

Since we are inside the class definition, we can use “this.this.this.this.” as a short cut instead of saying
QA.

JS Challenge 1. Can a private function call another private function?

For this challenge, write the private function call_all()call_all()call_all()call_all(). Inside this private function, call the

other two private functions.

What do you think will happen?

2. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

 /* ===/* ===/* ===/* ===
 * Zipline class constructor* Zipline class constructor* Zipline class constructor* Zipline class constructor
 * == */* == */* == */* == */
 constructor(xPos1, yPos1, xPos2, yPos2, stepSize)constructor(xPos1, yPos1, xPos2, yPos2, stepSize)constructor(xPos1, yPos1, xPos2, yPos2, stepSize)constructor(xPos1, yPos1, xPos2, yPos2, stepSize)
 {{{{
 this.this.this.this.xStPosxStPosxStPosxStPos = xPos1; = xPos1; = xPos1; = xPos1;
 this.this.this.this.yStPosyStPosyStPosyStPos = yPos1;= yPos1;= yPos1;= yPos1;
 this.this.this.this.xEnPosxEnPosxEnPosxEnPos = xPos2;= xPos2;= xPos2;= xPos2;
 this.this.this.this.yEnPosyEnPosyEnPosyEnPos = yPos2;= yPos2;= yPos2;= yPos2;
 this.this.this.this.stepSizestepSizestepSizestepSize = stepSize;= stepSize;= stepSize;= stepSize;

Explanation

In the Rock Climbing game, we must select one of the answers in order to climb up the rock.
We select an answer by ziplining to one of the four possible answers. We may need to
reposition ourselves to a different location by using a zipline and then using another zipline to
choose one of the answers. This means that we have to create copies of the zipline and each
zipline copy will be different. This is the perfect situation for objects.

We know that the “new” operator is used to create an object. How do we initialize the object
with custom values? The answer is to use the constructor inside the class definition.

The constructor above has 5 input parameters and these are used to customize the starting
and ending point of the zipline. Also, the last parameters are used to customize the speed of our
zipline and this determines how fast we travel.

Inside the constructor, we create several private member attributes (ie. private variables). We
know that they are private member attributes because of the word “this” and the period (.) that
is in front of the private attributes.

Remember, the period is the member access operator and it shows ownership. To the left of
the member access operator is the owner and to the right is what is being owned. This
means that the owner is Zipline and Zipline owns the private member attributes.

3. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* ===/* ===/* ===/* ===
* Check if done zipping* Check if done zipping* Check if done zipping* Check if done zipping
* == */* == */* == */* == */
check_end_hb(endXPos, endYPos)check_end_hb(endXPos, endYPos)check_end_hb(endXPos, endYPos)check_end_hb(endXPos, endYPos)
{{{{
 // // // // -------- the “if” statement is all one line of code the “if” statement is all one line of code the “if” statement is all one line of code the “if” statement is all one line of code

if(if(if(if(endXPosendXPosendXPosendXPos----10101010 <= this.xStPos && this.xStPos <= <= this.xStPos && this.xStPos <= <= this.xStPos && this.xStPos <= <= this.xStPos && this.xStPos <= endXPos+10endXPos+10endXPos+10endXPos+10 && && && && endYPosendYPosendYPosendYPos----10101010
<<<<= this.yStPos && this.yStPos <= = this.yStPos && this.yStPos <= = this.yStPos && this.yStPos <= = this.yStPos && this.yStPos <= endYPos+10endYPos+10endYPos+10endYPos+10))))
 {{{{
 console.log("ready to stop zipping");console.log("ready to stop zipping");console.log("ready to stop zipping");console.log("ready to stop zipping");
 return 1;return 1;return 1;return 1;
 }}}}
 else else else else
 {{{{
 return 0;return 0;return 0;return 0;
 }}}}
}}}}

Explanation

The code above assumes that the player has already pressed on the left button of the mouse
and the game character is zipping towards the end of the zipline. How do we know when to stop
the game character?

In game development, we have to check for collision and we do this by checking if the end of
the zipline is within the hitbox of our game character. The long “if” statement uses the less than
sign to check if the ending x and y points of the zipline are inside the hitbox. Notice that we have
a lower boundary and the upper boundary. If the ending x and y points of the zipline are inside
the upper and lower boundaries, then we have a collision.

4. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* ==/* ==/* ==/* ==
* Create New Zipline* Create New Zipline* Create New Zipline* Create New Zipline
* ===* ===* ===* === */*/*/*/
if(newLF)
{

console.log("ready for new zip");
 zipLineArr = [];
 newLF = 0;
 sbStill = 0;

 // -- all one line of code
 var zLObj = var zLObj = var zLObj = var zLObj = newnewnewnew ZipLine(ZipLine(ZipLine(ZipLine(playerArr[playerWB].pXPos, playerArr[playerWB].pYPos, playerArr[playerWB].pXPos, playerArr[playerWB].pYPos, playerArr[playerWB].pXPos, playerArr[playerWB].pYPos, playerArr[playerWB].pXPos, playerArr[playerWB].pYPos,
mouseXEnd, mouseXEnd, mouseXEnd, mouseXEnd, mouseYEnd, 3 mouseYEnd, 3 mouseYEnd, 3 mouseYEnd, 3););););

 zipLineArr.push(zLObj);
 zLNum++;

Explanation

In step 2, we created a class definition for a Zipline class. Inside the class definition, we used
the constructor to initialize any newly created objects.

The code in green uses the “new” operator to create an object. Next, we put data inside the
open and closing parenthesis and this data is given to the constructor. If we look at the
constructor of step 2, the data inside the open and closing parenthesis match up.

For example,

playerArr[playerWB].pXPos playerArr[playerWB].pXPos playerArr[playerWB].pXPos playerArr[playerWB].pXPos matches up with xPos1 of the constructorxPos1 of the constructorxPos1 of the constructorxPos1 of the constructor

playerArr[playerWB].pYPos playerArr[playerWB].pYPos playerArr[playerWB].pYPos playerArr[playerWB].pYPos matches up with yPos1 of the constructoryPos1 of the constructoryPos1 of the constructoryPos1 of the constructor

JS Challenge 2. Write "for" loop for zipLineArrzipLineArrzipLineArrzipLineArr

Write a "for" loop using the following
1. create a digital key named z and load the data 0 into it
2. keep going until the length of the array
3. jump z by 1 position

 /* ==/* ==/* ==/* ==
 * Zip line Arr* Zip line Arr* Zip line Arr* Zip line Arr
 * ==* ==* ==* === */= */= */= */

JS Challenge 3. Write an "if" statement to check hit box. This code will combine array
with objects

Wrote an "if" statement. Inside the "if" statement

1. select position z of zipLineArr.

2. next, use the member access operator to call the private function check_end_hb();

Inside the open and closing parenthesis of the private function, give it the input
 2.1. zipLineArr[z].xEnPos
 2.2. zipLineArr[z].yEnPos

 /* ==/* ==/* ==/* ==
 * Check Hit Box Zip* Check Hit Box Zip* Check Hit Box Zip* Check Hit Box Zip
 * === */ * === */ * === */ * === */

5. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* ===/* ===/* ===/* ===
* User moves mouse* User moves mouse* User moves mouse* User moves mouse
* * * * == */== */== */== */
if(canonMF)
{

 cContext.beginPath()
 cContext.lineWidth = 3;
 cContext.strokeStyle = "#ffffff";
 cContext.stroke();

 // -- code should be single line
 var pObj = new Path2D("MMMM " + (playerArr[selectedPlayerId].pXPos+4) + " " +
(playerArr[selectedPlayerId].pYPos+10) + " LLLL " + mouseXEnd + " " + mouseYEnd);

 cContext.stroke(pObj);

}

Explanation

Before the player can zip the game character from one place to another, we have to give the
user the ability to see where they potentially want to go. This will help the user visualize their
next move.

The code above will create a zipline with a starting position of the player's x and y position. The
code above uses the "M " command to tell the game to "move to" the player's x and y position.

The ending position will be with the "L " command and it will tell the game "line to" x and y
position of the mouse.

So, the code above translates into "Move To player's x and y position, Line To mouse's x
and y position ".

Finally, we actually draw the line by using the cContext.stroke(pObj);cContext.stroke(pObj);cContext.stroke(pObj);cContext.stroke(pObj);

6. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* ===/* ===/* ===/* ===
* Draw player in their new position * Draw player in their new position * Draw player in their new position * Draw player in their new position
* == */* == */* == */* == */

for(var p = 0; p < playerArr.length; p++)
{

// -- move player using zipline
 if(playerArr[p].zipLineObj.check_end_hb(playerArr[p].zipLineObj.xEnPos,
playerArr[p].zipLineObj.yEnPos))
 {
 playerArr[p].zipLineObj.load_new_step_size(0);

 }
 else
 {
 playerArr[p].zipLineObj.move_one_step();
 playerArr[p].update_xy_pos();
 }

 // -- direction control
 playerArr[p].pXPos += playerArr[p].playerDirArr[playerArr[p].moveXIndex];
 playerArr[p].pYPos += playerArr[p].playerDirArr[playerArr[p].moveYIndex];

 playerArr[p].playerDirArr[playerArr[p].moveXIndex] = 0;
 playerArr[p].playerDirArr[playerArr[p].moveYIndex] = 0;

 // -- draw new position
 cContext.beginPath();cContext.beginPath();cContext.beginPath();cContext.beginPath();
 cContext.fillStyle = playerArr[p].pColor;cContext.fillStyle = playerArr[p].pColor;cContext.fillStyle = playerArr[p].pColor;cContext.fillStyle = playerArr[p].pColor;

 // // // // -------- code should code should code should code should all fit on one lineall fit on one lineall fit on one lineall fit on one line
 cContext.drawImage(playerArr[p].pImage, playerArr[p].pXPos, playerArr[p].pYPos, cContext.drawImage(playerArr[p].pImage, playerArr[p].pXPos, playerArr[p].pYPos, cContext.drawImage(playerArr[p].pImage, playerArr[p].pXPos, playerArr[p].pYPos, cContext.drawImage(playerArr[p].pImage, playerArr[p].pXPos, playerArr[p].pYPos,
playerArr[p].pWidth, playerArr[p].pHplayerArr[p].pWidth, playerArr[p].pHplayerArr[p].pWidth, playerArr[p].pHplayerArr[p].pWidth, playerArr[p].pHeight);eight);eight);eight);

 cContext.fill();cContext.fill();cContext.fill();cContext.fill();

}

Explanation

The code above uses a "for" loop to loop through playerArr. Right now, we only have 1 player
and so the loop will only run once. However, in case we would like to have more players, the
code above doesn't need to be changed.

The code starts off by moving the player until the player reaches the end. Remember, we use
hit box calculation to check if the player has reached the end.
1. If we are within the hit box, we then load the step size to 0 and this stops the player from
moving.
2. else, we are not done moving and so move one step

Since the game character is in a different position from the previous position, we have to redraw
the game character again and the code in blue does that.

JS Challenge 4 - Type solution inside Zoom chat
1. create a digital key by creating a variable named j and load the data 2 into it
2. Inside the open and closing parenthesis of the “for” loop, select position j of wheelsArr
3. variable j should then jump by 2 positions
3. send an alert. Inside the open and closing parenthesis of the alert, select position j of
wheelsArr

JS Challenge 5 - Go to JS 1 Website
1. write a class definition of FoodItem
2. write a constructor that accepts 2 inputs, foodTitle and foodCost
3. inside the constructor, create 2 private variables named fTitle and fCost.
4. write one private function named show_food()
4.1. inside the private function show_food(), send an alert. Inside the open and closing
parenthesis of the alert, call the private variables fTitle and fCost.

