
1

1

GD 16
Feed The Fish, Part 2

In part 1, we learned that a class is a generic description of something. Inside the constructor of
the class definition, we use the member access operator, which is the period, to show
ownership of private variables and actions. Remember that to the left of the member access
operator is the owner and to the right of the member access operator is what is being owned.

// -- object at position 0000 owns the action drop_one_offset();

dotArr[0]dotArr[0]dotArr[0]dotArr[0]....drop_one_offset()drop_one_offset()drop_one_offset()drop_one_offset()

What if we wanted to make multiple copies of the class? We can use the class as the original
and make copies of the class by using the “new” operator. These copies of the original class are
called objects.

In this part 2, we will combine array manipulation with classes and objects to loop through and
update the private variables of each object. This will allows us to make the game objects move.

Feed The Fish is a game where the players must route the food to the correct fish. The food is
of different color and the challenge is to route the correct food to the same colored fish. We feed
the fish by drawing ramps that must slope in the downward direction. These ramps can be
combined together to create a maze that will route the food to the same colored fish.

0. Array Review 1. Class definition 2. new operator 3. Creating objects

CONTINUE TO THE NEXT PAGE

2

2

1. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* =====================================/* =====================================/* =====================================/* =====================================
* New * New * New * New RampRampRampRamp
* =============================* =============================* =============================* ====================================== */========= */========= */========= */
if(newLF)
{
 newLF = 0;

 // -- starting position is down below in the middle

 var zLObj = newnewnewnew ZipLineZipLineZipLineZipLine(mouseXStart, mouseYStart, mouseXEnd, mouseYEnd, 3);

 zipLineArr.push.push.push.push(zLObj);

}

Explanation

The code above creates an object by using the “new” operator. The class name is ZipLine and
the object name is zLObj.

The input arguments to create the object are mouseXStart, mouseYStart, mouseXEnd, mouseYEnd, 3.

a. The first two input arguments are the starting x and y position of the ramp
b. The next two input arguments are the ending x and y position of the ramp
c. The last input argument, 3, is the thickness of the ramp

The paragraph above creates a clone (ie. creates an object) and the input arguments make the
object unique.

Finally, we put the ramp into the array named zipLinArr by using .push().

CONTINUE TO THE NEXT PAGE

3

3

2. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* ================================/* ================================/* ================================/* ================================
* Draw Ramp* Draw Ramp* Draw Ramp* Draw Ramp
* =================================* =================================* =================================* ================================= */*/*/*/

for(var z = 0; z < zipLineArr.length.length.length.length; z++)
{
 cContext.beginPath();
 cContext.lineWidth = "5";
 cContext.strokeStyle = "#006500";

 // // // // -------- the code below should be on a single linethe code below should be on a single linethe code below should be on a single linethe code below should be on a single line
 var pObj = new Path2D("M " + zipLineAvar pObj = new Path2D("M " + zipLineAvar pObj = new Path2D("M " + zipLineAvar pObj = new Path2D("M " + zipLineArr[z].xStPos + " " + rr[z].xStPos + " " + rr[z].xStPos + " " + rr[z].xStPos + " " +
zipLineArr[z].yStPos + " L " + zipLineArr[z].xEnPos + " " + zipLineArr[z].yEnPos zipLineArr[z].yStPos + " L " + zipLineArr[z].xEnPos + " " + zipLineArr[z].yEnPos zipLineArr[z].yStPos + " L " + zipLineArr[z].xEnPos + " " + zipLineArr[z].yEnPos zipLineArr[z].yStPos + " L " + zipLineArr[z].xEnPos + " " + zipLineArr[z].yEnPos
););););

 // -- the code below should be on a single line
 cContext.drawImage(cursorImg, zipLineArr[z].xStPos, cContext.drawImage(cursorImg, zipLineArr[z].xStPos, cContext.drawImage(cursorImg, zipLineArr[z].xStPos, cContext.drawImage(cursorImg, zipLineArr[z].xStPos,
zipLineArr[z].yStPos, 50, 50);zipLineArr[z].yStPos, 50, 50);zipLineArr[z].yStPos, 50, 50);zipLineArr[z].yStPos, 50, 50);

 cContext.stroke(pObj);cContext.stroke(pObj);cContext.stroke(pObj);cContext.stroke(pObj);
 }

Explanation

In step 1, we created a ramp object by using the “new” operator. Remember that in modern
video game development, we also have to draw or render the game object onto the canvas.

If the game player wanted to route a specific food color to a food, the game player will use many
ramps to route the food. Everyone of these different ramps are stored into the array named
zipLineArr. We will loop through the array to draw the ramp onto the canvas.

The code in blue will first connect the starting (x,y) point with the ending (x,y) point to create a
line. The next code in blue will then draw the icon to show the starting point of the ramp.

Finally, the code in green will draw the ramp. For each item in the array, the code will draw a

ramp for that item. So, if the player created 10 ramps, then the .length is equal to 10 and the

loop will run 10x times.

4

4

3. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* =======================================/* =======================================/* =======================================/* =======================================
* Collision/interference detection* Collision/interference detection* Collision/interference detection* Collision/interference detection
* * * * == */== */== */== */
for(var b = 0; b < dotArr.length; b++)
{
 for(var z = 0; z < zipLineArr.length; z++)
 {
 // -- downward, right direction
 if(dotArr[b].check_hb(zipLineArr[z].xStPos, zipLineArr[z].yStPos,
zipLineArr[z].xEnPos, zipLineArr[z].yEnPos))
 {
 dotArr[b].load_laser_profile(zipLineArr[z].return_profile());

 }

 // -- downward, left direction
 if(dotArr[b].check_hb_2(zipLineArr[z].xStPos, zipLineArr[z].yStPos,
zipLineArr[z].xEnPos, zipLineArr[z].yEnPos))
 {
 dotArr[b].load_laser_profile(zipLineArr[z].return_profile());

 }

 }

}

Explanation

The code above has a loop inside a loop. Notice that the green banner has the word
“Collision/interference detectionCollision/interference detectionCollision/interference detectionCollision/interference detection “. When the game starts, the dots (the dots are the
colored fish food) are at the top of the screen and fall down.

What if any of the dots touch a ramp? It could be any dot that touches the fish food. In order
for us to find out which dot touched a ramp, we would have to loop through the entire dotArr by
starting at position 0.

Next, we have to check if the dot at position 0 has touched any of the ramps � the dot at
position 0 could have touched any ramp. So, in order to find out if the dot at position 0 has
touched any of the ramps, we have to loop through the entire zipLineArr by starting at position
0.

If we find that a dot has touched a ramp, then the next step is to determine the direction of the
ramp. There are two directions, downward right or downward left, and that is why two “if”
statements are needed.

a. If a dot touched a ramp that has direction downward right, then the first “if” statement is
true and the dot travels in the downward right direction.

5

5

b. If a dot touched a ramp that has direction downward left, then the second “if” statement
is true that the dot travels in the downward left direction.

JS Challenge 1 – Array Review

This JS Challenge can be completed by writing the code on the website
https://www.w3schools.com/code/tryit.asp?filename=GD76D4FQPT8Q

1. Above the function main(), declare an array named myLetter. The right side of the
array has the data [a, a, b, z, h, m, e, w, p, y, u, q, w, n]

2. Inside the function main(), do the following

a. Make a digital key named “u” and load the data 0 into it. The digital key will be used
to write the “for” loop

b. Write a “for” loop starting at position 0, ending at the length of the array, and jump by
2

3. Inside the body of the “for” loop, do the following

a. declare a variable named currLetter.

b. Next, use square brackets and the digital key named “u” to select one position of the
array. Load this data into the variable currLetter

c. Send an alert with currLetter inside the parenthesis of the alert

JS Challenge 2 – Calculate Average

This JS Challenge can be completed by writing the code on the website
https://www.w3schools.com/code/tryit.asp?filename=GD76D4FQPT8Q

1. Above the function main(), declare an array named classGrades. The right side of the
array has the data [5, 3, 6, 9, 10, 2, 0, -5, 6, 3]

2. Inside the function main(), do the following

a. Declare a variable named sum and load the data 0 into it
b. Make a digital key named “c” and load the data 0 into it. The digital key will be used to
write the “for” loop
c. Write a “for” loop starting at position 0, ending at the length of the array, and jump by

1

3. Inside the body of the “for” loop, do the following

a. Use square brackets and the digital key named “c” to select one position of the

array. Next, the data at the position should be added to the variable sum

6

6

4. Outside of the “for” loop, calculate the average. In order to calculate average, the
equation is

Average = sum / amount of items in the array classGrades

a. You already have sum.
b. The amount of items in the array classGrades is the length of the array

5. Send an alert of the average

