
1

1

GD 14
Drawing App, Part 2

In GD 13, we learned that creating a simple drawing program requires not having to erase the
screen. Instead, we keep the current content and then add onto it.

Being able to specify a starting point, an end point, and then connecting them with a line allows
us to create one part of a shape’s outline. If we use the same process for all points, then we
have created a shape. Being able to manually connect two points with a line also gives us the
ability to create custom shapes.

In this lesson, we will learn how to create custom shapes by using the M command followed by

the L command.

1. Custom Shapes 2. Path2D

1. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* /* /* /* ==
* Keyboard Event & Event Handler* Keyboard Event & Event Handler* Keyboard Event & Event Handler* Keyboard Event & Event Handler

* == */* == */* == */* == */

window.addEventListener("keydownkeydownkeydownkeydown", key_decodekey_decodekey_decodekey_decode);

Explanation

The code above set our website up to listen for and then react to the user pressing down on the
keyboard. The event is “keydownkeydownkeydownkeydown”. When the user presses down on any button of the keyboard,
the website will react by calling the JS function key_decode().

2. Manual Connection of Shapes

We know that a shape is an array of points. The HTML 5 canvas has premade functions that
help us connect the points together with a line to create a shape. We used ctx.rect()ctx.rect()ctx.rect()ctx.rect() and
ctx.fill()ctx.fill()ctx.fill()ctx.fill() to create a square or rectangle.

There are situations where we want to create custom shapes. HTML 5 canvas allows us to do
that by manually connecting the points. We use ctx.ctx.ctx.ctx.Path2D(pathString) Path2D(pathString) Path2D(pathString) Path2D(pathString) to manually
create custom shapes. The pathString is a variable that contains a mix of variables and custom
quotations.

For example,

 var pathString = “var pathString = “var pathString = “var pathString = “

The example code translates into “
from the starting point to (100,10). Next,
(100,300). Finally, connect the most recent point to the starting point

There are several important points

1. We use the M command to indicate the
M command as “Move to (x,y).”

2. Next, we use the L command to connect the
second point with the third point, the third point with the fourth point, and so on.
can use many L commands.

3. The Z command is a special command that tells

point with the starting point specified by the
command per shape.

We can now use the M, L, and Z command with (x,y) pair to map out the points of our shape.
The more points we have, the more detailed the shape but it does take longer to draw.

var pathString = “var pathString = “var pathString = “var pathString = “M 0 0 M 0 0 M 0 0 M 0 0 L 100 10 L 100 300L 100 10 L 100 300L 100 10 L 100 300L 100 10 L 100 300 ZZZZ”;”;”;”;

The example code translates into “Move to point (0,0) as the starting point. Next,
from the starting point to (100,10). Next, draw a line from the previous point to the next point of

Finally, connect the most recent point to the starting point”.

points to remember.

command to indicate the starting (x,y) point. The canvas will interpre
Move to (x,y).” There should only be one M command per shape.

command to connect the starting point with the second point, the
second point with the third point, the third point with the fourth point, and so on.
can use many L commands.

command is a special command that tells the canvas to connect the most recent

point with the starting point specified by the M command. There should only be one Z

We can now use the M, L, and Z command with (x,y) pair to map out the points of our shape.
The more points we have, the more detailed the shape but it does take longer to draw.

2

2

point (0,0) as the starting point. Next, draw a line
from the previous point to the next point of

The canvas will interpret the
There should only be one M command per shape.

point with the second point, the
second point with the third point, the third point with the fourth point, and so on. A shape

canvas to connect the most recent

There should only be one Z

We can now use the M, L, and Z command with (x,y) pair to map out the points of our shape.
The more points we have, the more detailed the shape but it does take longer to draw.

3

3

3. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

/* ====================================/* ====================================/* ====================================/* ====================================
* * * * TrapezoidTrapezoidTrapezoidTrapezoid ShapeShapeShapeShape

* ======* ======* ======* == */*/*/*/
class TrapezoidShape
{
 constructor()
 {
 this.xPos = 0;
 this.yPos = 0;
 this.sWidth = 50;
 this.sHeight = 50;

 this.moveToString = " ";this.moveToString = " ";this.moveToString = " ";this.moveToString = " ";
 this.lineToString = " ";this.lineToString = " ";this.lineToString = " ";this.lineToString = " ";
 this.pathString = " ";this.pathString = " ";this.pathString = " ";this.pathString = " ";
 }

 update_state(posX, posY)
 {
 this.xPos = posX;
 this.yPos = posY;

 this.moveToString = "MMMM " + this.xPos + " " + this.yPos + " ";
 this.lineToString = "LLLL " + (this.xPos + this.sWidth) + " " + this.yPos + " LLLL
" + (this.xPos + this.sWidth) + " " + (this.yPos + this.sHeight) + " LLLL " +
(this.xPos-50) + " " + (this.yPos + this.sHeight);

 this.pathStringthis.pathStringthis.pathStringthis.pathString = this.moveToStringthis.moveToStringthis.moveToStringthis.moveToString + this.lineToStringthis.lineToStringthis.lineToStringthis.lineToString + " ZZZZ ";

 }

}

Explanation

There are many ways to create a custom path string. To make it easier for us to read and write
code, I split the path string into different variables. This will make it easier for use to specify the
starting point for the M command, the middle points for the L command, and then finally the Z
command to finish the shape.

In the code above, the M, L, and Z commands are in between double quotations. If we don’t put
the commands in between double quotations, then HTML 5 canvas will think it is a variable.

However, the (x,y) pair can be on the outside of the double quotations. We are using variables
to store the (x,y) pair and so it is ok to put the variables outside of the double quotations.

The last line of code combine them together using the + plus operator, which can mean two
things based on the data we give it.

4

4

a. If we give it numbers, then the + plus operator adds the two numbers together as a
math operation

b. If we give it letters or words, then the + plus operator joins them together to form a

sentence.

The Javascript programming language will do this automatically for us and that is why the code
above works.

CONTINUE TO THE NEXT PAGE

5

5

4. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

This is also JS Challenge 0

/* ===/* ===/* ===/* ===
* * * * Square ShapeSquare ShapeSquare ShapeSquare Shape

* == */* == */* == */* == */
class SquareShape
{

constructor()
 {
 this.xPos = 0;
 this.yPos = 0;
 this.sWidth = 50;
 this.sHeight = 50;

 this.moveToString = " ";
 this.lineToString = " ";
 this.pathString = " ";
 }

update_state(posX, posY)
 {
 this.xPos = posX;
 this.yPos = posY;

 this.moveToString = "M " + this.xPos + " " + this.yPos + " ";

this.lineToString = "L " ;this.lineToString = "L " ;this.lineToString = "L " ;this.lineToString = "L " ;

this.pathString = this.moveToString + this.lineToString + " Z ";

 }

 }

Explanation

Finish the code in red to create a square.

JS Challenge 1

1. Create the class definition for a pentagon shape.
2. Push it into the colorcolorcolorcolorBoxArrBoxArrBoxArrBoxArr

6

6

JS Challenge 2

1. Create the class definition for an arrow shape.
2. Push it into the colorBoxArrcolorBoxArrcolorBoxArrcolorBoxArr

JS Challenge 3

1. Create the class definition for a hexagon shape.
2. Push it into the colorBoxArrcolorBoxArrcolorBoxArrcolorBoxArr

