
1

1

GD 11
Build The Roller Coaster, Part 1

Roller coasters are fun because the ramp is so wild. Some roller coasters have multiple loops
while others focus on rising and falling.

In this lesson, we will combine art with game development. We will use our mouse to draw a
custom ramp and then use the keyboard to active the game.

Build The Roller Coaster – Press down on the left button of the mouse. Next, move the
mouse around to draw your ramp. The goal is to match the national flag with the correct nation.
Answer quickly and more ramp is build to extend the or else the roller coaster will fall into the pit
of misery and the game is over.

1. Event listener 2. Pixel & Path

1. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

 /* ====================================/* ====================================/* ====================================/* ====================================
 * Draw Ramp Event Handlers* Draw Ramp Event Handlers* Draw Ramp Event Handlers* Draw Ramp Event Handlers
 * ===================================== */* ===================================== */* ===================================== */* ===================================== */

 window.addEventListener("mousedownmousedownmousedownmousedown", path_startpath_startpath_startpath_start);

 window.addEventListener("mouseup", path_end);window.addEventListener("mouseup", path_end);window.addEventListener("mouseup", path_end);window.addEventListener("mouseup", path_end);

 window.addEventListener("mousemove", new_point);window.addEventListener("mousemove", new_point);window.addEventListener("mousemove", new_point);window.addEventListener("mousemove", new_point);

 window.addEventListener("keypress", check_key);

Explanation

The code above sets up our event and event handler. The code in red is our event. Let’s focus

on the “mousedownmousedownmousedownmousedown” event. We don’t start drawing until the user presses down on the left
button of the computer mouse. So, we have to set up an event listener to detect this and the
code in red sets up the detection.

Next, when the game does detect that the user has pressed down on the computer mouse, we
have to react to the event. The code in green is a JS function call and it is our event handler (
ie. reaction to an event)

When we start to draw a shape, the code will create a path based on our mouse movement.
The code in blue sets up the event listener for when the mouse moves to a different location.

2

2

The code in orange sets up an event listener for when we stop drawing. In our case, when the
user no longer presses down on the left button of the mouse, then the drawing is done. The

code in orange will detect and stop the drawing by calling the JS function path_endpath_endpath_endpath_end.

2. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

 /* =========================== /* =========================== /* =========================== /* ===========================
 * class PointXY* class PointXY* class PointXY* class PointXY

 * ======* ======* ======* ============================ */====================== */====================== */====================== */
 class PointXY
 {
 constructor(xP = 0, yP = 0)
 {
 this.xPoint = xP;
 this.yPoint = yP;
 }

 get_profile()
 {
 return { x: this.xPoint, y: this.yPoint };
 }
 }

Explanation

The code above is the class definition for PointXY. We are using a class to combine together
the (x,y) position of a single pixel. Every time the user presses down on the left button of the
mouse and then moves the mouse, it will create a new (x,y) point. The new (x,y) point used to
create an object.

Later on, we connect all of the objects together to create the shape of our ramp.

3

3

3. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

 /* ===================================/* ===================================/* ===================================/* ===================================
 * First Point* First Point* First Point* First Point
 * ====================================*/* ====================================*/* ====================================*/* ====================================*/
 if(sampleCount <= 0)
 {

 prevMouseX = eventObj.offsetX;
 prevMouseY = eventObj.offsetY;

 // -- put into array

 pObj = new PointXY(eventObj.offsetX, eventObj.offsetY);pObj = new PointXY(eventObj.offsetX, eventObj.offsetY);pObj = new PointXY(eventObj.offsetX, eventObj.offsetY);pObj = new PointXY(eventObj.offsetX, eventObj.offsetY);
 pointArr[sampleCount] = pObj.get_profile();pointArr[sampleCount] = pObj.get_profile();pointArr[sampleCount] = pObj.get_profile();pointArr[sampleCount] = pObj.get_profile();

 sampleCount++;sampleCount++;sampleCount++;sampleCount++;

 }

Explanation

When the game starts, the player has not drawn the ramp. So, the code above sets up the

starting point of the ramp. Notice that the code in grey uses the PointXY()PointXY()PointXY()PointXY() class definition that
we previously written code for.

The code in grey uses the (x,y) position of the mouse as input commands to create a new
object of type PointXY().PointXY().PointXY().PointXY(). This is the first pixel of the ramp. Next, we store the first pixel into
the array that is named pointArrpointArrpointArrpointArr. This time, we manually select a single position of the array
using square brackets.

Since we already have the starting point, the code in blue increments to the next point. In the
end, we connect all of the points together to create the ramp.

CONTINUE TO THE NEXT PAGE

4

4

4. Write the code below in between <script> </script>. The large, green banner is your
landmark. Go to the coding website and look for it. Next, write the code below underneath
the large, green banner. Write all of it, color code is for explanation.

 /* ===================================/* ===================================/* ===================================/* ===================================
 * Second Point & Beyond* Second Point & Beyond* Second Point & Beyond* Second Point & Beyond
 * ====================================*/ * ====================================*/ * ====================================*/ * ====================================*/
 else
 {
 pathString = "M " + prevMouseX + " " + prepathString = "M " + prevMouseX + " " + prepathString = "M " + prevMouseX + " " + prepathString = "M " + prevMouseX + " " + prevMouseY + " L " + vMouseY + " L " + vMouseY + " L " + vMouseY + " L " +
eventObj.offsetX + " " + eventObj.offsetY;eventObj.offsetX + " " + eventObj.offsetY;eventObj.offsetX + " " + eventObj.offsetY;eventObj.offsetX + " " + eventObj.offsetY;

 prevMouseX = eventObj.offsetX;
 prevMouseY = eventObj.offsetY;

 // -- put into array
 pObj = new PointXY(eventObj.offsetX, eventObj.offsetY);
 pointArr[sampleCount] = pObj.get_profile();
 console.log("x: " + pointArr[sampleCount].x + ", y: " +
pointArr[sampleCount].y);
 console.log("pointArr[" + sampleCount + "]: " + pointArr[sampleCount]);

 sampleCount++;
 console.log("sampleCount: " + sampleCount);

 // -- draw
 var pathObj = new Path2D(pathString);
 ctx.beginPath();
 ctx.lineWidth = "3";
 ctx.strokeStyle = "#ffa500";
 ctx.stroke(pathObj);

 }

Explanation

In the previous step, we began to draw the ramp by saving the (x,y) position of the mouse.

In the code above, we continue to save the (x,y) position of the ramp in order to continue to
draw the ramp. The code looks very similar except the code in red is new.

How do we make a shape? We have to connect the points together with a line. The code in red
connects the previous point with the point that was recently drawn. When all points are
connected together, we create the shape of our ramp.

The code in red uses special symbols. The “M “ � move to the previous point and the “L “
means to make a line. So, this translates into “Move to the previous mouse position and
draw a line to connect the previous mouse position with the current mouse position.”

