JS 22 Calendar OOP

So far, we have done too many valid input checks. Is there an easier way? Yes, there is
and the solution is to limit the number of values that the user can enter. By doing so, we only
give the user valid input and don’t need to filter the input.

What about the situation where the event has to be moved to a different day? We
accounted for this in JS 21. What if the user wants to move an event to a AND a
different month? We will use JS 21 as a template on how to move an event to a different day
and month.

In this session, we continue to focus on admin control by only giving acceptable values that
can be chosen from and the movement of an event to a AND a different month.

1. Add and remove 2. Options for users

1. Write The HTML Code In Between <body> </body>. Write the code in BLUE and
PURPLE and position it ABOVE the code in BLACK.

<select id="dMenu">

<option id = "d_1" value="1" selected > 1 </option>
<option id = "d_2" value="2"> 2 </option>
<option id = "d_3" value="3"> 3 </option>
<option id = "d_4" value="4"> 4 </option>
<option id = "d_5" value="5">5 </option>
</select>

<select id="mMenu">

<option id = "m_1" value="jan_events" selected> Jan </option>

<option id = "m_2" value="feb_events”> Feb </option>

<option id = "m_3" value="mar_events”> Mar </option>
</select>

Continue to the next page

Explanation

In JS 8, we used radio boxes to allow selection of only a single choice. The private attribute
¢ ” can be used to determine which radio box was chosen by the user. If ?
has the value of “true”, then the user clicked on that specific radio button. Since ONLY ONE
radio button can be “ ”, this means only one conditional statement below can be true.

function get_cc(uRB, hRB)

{
var cc = "#606060";
if(uRB. == true)
{
cc = "#ff0000";
}
else if(hRB. == true)
{
cc = "#483D8B";
}
else
{
cc = "#a0a0ad";
}
return cc;
}
We now transition to the tag that is used to give multiple options AND can serve
as our input filter. The best way to filter something is to only give VALID input as the selectable
options. This is why is so important!!!

The options given to the user are ALREADY VALID and only a SINGLE valid option can be
selected. This a two for one where we give freedom by giving multiple options and the options
given are already valid and no input filter is needed.

How do we know which option was “ " by the user? The “ " is a private
attribute and we can use the member access operator to access it. Next, we check it is true.
The JS code in Chapter 3 will perform the check.

2 . Write The HTML Code In Between <body> </body>. Write the code in BLUE and
PURPLE and position it ABOVE the code in ORANGE.

<th

id = Hten

onclick = "tabSel(@)"

>
Jan

</th>

Explanation

The code in BLUE is a special HTML tag that is used to indicate sections (very,
very, very small sections). Notice that there is no data in between the open and closing span
tags. Later on, we will update the in-between with the number of events and urgent events in
January by using JS code.

The important part is the id, which is used to identify an HTML element by giving it a name.
Remember that JS code links up with HTML by using

1. The id of the HTML element
2. document.getElementById();

The
 tag means “break” and it is equivalent to pressing “enter” to go to the next line.

The tag is for small
sections while <div> is for large sections.

If you want to break up a website into large sections, then use <div>.

However, if you only need , like a couple of
words, then use

3. Write The JS Code In Between <script> </script>. Write all of it!!! Color
code is for explanation.

{
// -- determine priority, id start at @
var pLevel = 0,
found =9,
i =0;
do
{
var pObj = document.getElementById("pri_" + i);
{
found = 1;
}
else
{ .
i++;
}
}
while(i < 3 && !found),
// -- store new position into private attribute
this.pLevel = i;
}
checkpoint_pLevel()
{
var
i = 0; // -- pLevel starts at 0
// -- loop through and reset
do
{
var pObj = document.getElementById("pri_" + i);
pObj.selected == false;
}
while(i <= 3),
// -- checkpoint
document.getElementById("pri_" + this.pLevel).selected = true;
}

Continue to the next page

Explanation

Let’s start with the function definition of checkpoint_pLevel (). This function definition is
called when the user wants to modify an EXISTING event. We are using a unique loop here
called the do-while loop. Notice that the semi-colon is after the while() statement.

In all other loops, we check the loop condition first and run the loop body second.
— we run the loop body first and check the loop condition
second. A do-while(); loop is for single pass first and check second.

A good example is the function definition which is above. What if we find
that the user selected the first option for priority level, which is “urgent”? If we found it already,
do we still need to run the loop? No we don’t. So, we can stop since the loop condition is
already satisfied.

However, after the single pass and we find that the user selected the third option, then the loop
continues. So, the do-while() loop saves us time since it exits if the user chose the first option
and continues if the user chose any other option.

4. Write The JS Code In Between <script> </script>. ONLY Write all of it!!!
Color code is for explanation. private function

alert("inside private fx update()");

var msg
var title

document.getElementById("nEInput”).value;
document.getElementById("nETitle").value;

alert("please work");

!/l --
this.get_day();
var day = this.day;

this.get_month();
var month = this.tabld;

this.get_pLevel();
this.get_cc();

alert("day: " + day);
if(day == this.prevDay)

{

alert("same day”);

AND
if(month == this.prevMonth)

{
this.eColor = this.get_cc();
this.msg = msg;
this.day = day;
this.eTitle = title;

var eObj = document.getElementById(this.tabId + "_" + this.day + "_" + this.eTicket);
alert("this.eColor: " + this.eColor);
console.log("this.eColor: " + this.eColor);
eObj.style.backgroundColor = this.eColor;
eObj.innerHTML = this.eTitle;

}

BUT

else

{
// -- remove old row

var o0ldObj = document.getElementById(this.prevMonth + "_" + this.day + "_" + this.eTicket);

0ldObj.remove();
//this.go_to_IT();
//month_count_calc(this.prevMonth);
this.tabId = month;
this.eColor = this.get_cc();
this.msg = msg;
this.day = day;
this.eTitle = title;
// -- make a new row
this.make_clone(this.eTicket);
// --
this.hide_pop_up();
/* -- new location means new HTML element was added on the fly
a. add event listener on this new location
*/
this.set_event_listener(this.eTitle);
//this.go_to_IT();
//month_count_calc(this.tablId);

}

}
else

alert("different day”);

// -- different day BUT same month

6

if(month == this.prevMonth)

// -- remove old row
var 0ldObj = document.getElementById(this.tabId + "_" + this.prevDay + "_" + this.eTicket);

0ldObj.remove();

this.eColor this.get_cc();

this.msg = msg;
this.day = day;
this.eTitle = title;
// -- make a new row

this.make_clone(this.eTicket);

/l -
this.hide_pop_up();

/* -- new location means new HTML element was added on the fly
a. add event listener on this new location

*/

this.set_event_listener(this.eTitle);

AND
else

// -- remove old row
var 0ldObj = document.getElementById(this.prevMonth + "_" + this.prevDay + "_" + this.eTicket);

0ldObj.remove();

//this.go_to_IT();
//month_count_calc(this.prevMonth);

this.tabId
this.eColor
this.msg
this.day
this.eTitle

month;
this.get_cc();
msg;

day;

title;

// -- make a new row
this.make_clone(this.eTicket);

// --
this.hide_pop_up();

/* -- new location means new HTML element was added on the fly
a. add event listener on this new location

*/

this.set_event_listener(this.eTitle);

//this.go_to_IT();
//month_count_calc(this.tabId);

}

Explanation

There are several situations that we must account for.
1. The event title and message were updated to something else

2. The eventis to a different day
3. The eventis to a different month
4. The eventis to a different DAY and MONTH

In situation 2 — 4, we are moving an event to a different row (where each row is a different day
) or a different month (where each tab is a different month). This means that we have to
delete the existing event block and make a new one.

So, look at the code in ORANGE and see that we have to remove the old event object. Next,

we make a new clone and put the new clone in a different day or month.

1. The steps above creates the effect of “moving an event block” by simply repositioning it in a
different location

5. Write The JS Code In Between <script> </script>. WRITE ALL OF IT!!!
Color code is for explanation.

()
{
console.log("inside month_count_calc()");
// -- using repository
var mObj = document.getElementById(monthId + "_ecount"”);
var mUrObj = document.getElementById(monthId + "_urCount"”);
var
totalCount = 0,
urCount = 0;

for(var i = 0; i < eArr.length; i++)

{
// -- check if month matches parameter
if(eArr[i].tabId ==)
{
totalCount++;
if(eArr[i].priLevel == 0)
{

urCount++;

}

mObj.innerHTML
mUrObj.innerHTML

"(" + totalCount + ")";
"CU: " +urCount + ") ";

}
Explanation

. Remember that a function definition is giving code
a name so that we can reuse it later on. The name of the code above is

month_count_calc().

The code in PURPLE matches with the id of chapter 2. This means that the code above is
using a “/ 0" loop to access the private attribute of tabId to compare it with the input
parameter

So, if we want to find out the number of events in the month of January, then the data
¢ ” is stored into the input parameter . Next, we execute the first “If".

An event in January means that the first “if” statement is true and we increment the variable
totalCount by 1.

However, if the event object IS NOT in January, then the “if” statement is false.
1. Since there is no “ELSE” statement, a false means we do nothing.

The code above is the function definition. When do we use the function

definition?
Notice that the in Chapter 6 is the function call (

) and we pass in the month as the input
parameter.

6 . Write The JS Code In Between <script> </script>. WRITE ALL OF IT!!!
Color code is for explanation.

/-
function mod_eObj()
{
alert("inside mod_eObj() ");
//this.tabld + "_" + this.day + "_" + this.eTicket;
// var objToMod = document.getElementById(chosenEId);
eArr[chosenTicket].update();
(n n) ;
("feb_events");
("mar_events");
}
Explanation
The code in is the function name that was written in Chapter 5. Anytime we write the

function name, we are call it and using it.

The first code wants to know how many events are in January and so we give
¢ ” as an input parameter. If we look back at section 5, the input “
is stored into

Test

Click on the GREEN “Run” button and do the following

1. Click on the button “Add New Event” and the website will create a RED event object on the
Jan tab of day 1.

2. Click on the RED event block of Jan 1 to activate the pop up banner. Remember, the pop
up banner is in “toggle” mode - clicking on an event block will make it appear or
disappear.

3. When the pop up banner appears, go up to the select menu and change the month to Feb

and the day to 5

Next, click on the “Mod” button

Effect: The event block should move from Jan 1 to Feb 5

oA

10

JS Challenge

Currently, we have a count of the number of urgent events. What about the number of high
priority events?

Look at the code of section 5 and see that we have two variables named totalCount and
urCount.

1. Make another variable called hiCount and load the data 0 into it.

Next, update the code in Chapter 5 to determine the number of high priority events.

HINT:

a. You will need another “1 f” statement to perform the check

b. Use square bracket notation of the array ([]) and the member access operator to
access the private attribute of priLevel

c. If urgent priority has a prilLevel of 0, then high priority has a priLevel of ...

11

