JS 17 MP3 Player Final

In JS 16, we created a pop up banner to display extra information. The user “ " for the
extra information by putting the mouse cursor over a song.

Is there a way for us to customize the service? What if someone only wants to listen to songs
within the “EDM” genre? Is there a way for us to write code that filters out all songs and only
keeps songs within the “EDM” genre?

In this session, we focus on filtering out songs and this gives the user the ability to customize
their playlist.

1. Button and onclick event 2. Array manipulation 3. Cloning

1. Write The JS Code In Between <script> </script>. WRITE ALL OF IT!!! Color
code is for explanation.

function make_table(tId)
{

//alert("inside make a clone()");

// -- make table

var tbDOM = document.createElement("TABLE");
// tbDOM.setAttribute("id", "playlistTb");
tbDOM. setAttribute("id", tId);
console.log("make new table"”);

// -- put table inside songInfo

console.log("append table");

}

Explanation

There are two ways to create multiple music playlists. The first approach is to ONLY delete
what we don’t need and then building the playlist by adding on to the remaining songs. The
problem with this approach is that we have to keep track of all of the items that we deleted and
then fill in the empty slots. This is possible but the code is messy.

The second approach is to erase everything and start over. This seems like a lot of work!!!
Actually, it is really efficient to erase everything and just start over. Remember that we
are using functions and so starting over means calling functions to building the playlist again.

This first function definition is building the table by creating a new table element. The code in
green uses document.createElement () to create a new table element. This is important
because we are creating a new HTML element on the fly by writing Javascript code.

How important is it? Imagine driving down the road and a flat tire causes you to pull the car
over onto the side. In a real work situation, we have to call and then wait for maintenance
service to arrive.

Now, imagine being able to create a new wheel on the spot, changing out the flat tire to put in
the new tire, and then continuing on. This is what we are doing with

var tbDOM = document.createElement("TABLE"); We are creating a new item on the fly
and then using it immediately.

The code in maroon gives the new table a name. How do we give an HTML element a name?
The answer is to give it an id. Remember that giving an id to an HTML element allows JS to
find it. This is special code because JS is giving the id and this creates dynamic HTML.

The code in puts the newly created table into the webpage.

2. Write The JS Code In Between <script> </script>. WRITE ALL OF IT!!! Color
code is for explanation.

function make_row(rId, rNum, tId)

{

// -- make row

var trDOM = document.createElement("TR");
trDOM.setAttribute("id”, rId + rNum);
console.log("make new row");

// -- put row inside table
var tbDOM = document.getElementById(tId);

console.log("append new row”);

Explanation

Next, we are making a row. The code in green uses document.createElement() to
create a new table row, “TR”. After that, the code in maroon gives the newly created row a
name by setting its id. Finally, the code in puts the newly created row inside the table that
was created in chapter 1.

3. Write The JS Code In Between <script> </script>. WRITE ALL OF IT!!! Color
code is for explanation.

function make_a_clone(id, songObj, rId, rNum)

{
var tdDOM = document.createElement("TD");
tdDOM. setAttribute("id", tdIdNamesArr[i]);
var trDOM = document.getElementById(rId + rNum);
trDOM. appendChild(tdDOM);
var cNodes = trDOM.children;
cNodes[0@].setAttribute("id"”, playlist[id].bandId);
//alert(cNodes[@].innerHTML);
cNodes[@].innerHTML = songObj.bandName;
cNodes[1].setAttribute("id", playlist[id].titleld);
cNodes[1].innerHTML = songObj.title;
cNodes[2].setAttribute("id", playlist[id].captionId);
cNodes[2].innerHTML = songObj.caption;
cNodes[3].setAttribute("id"”, playlist[id].genreld);
cNodes[3].innerHTML = songObj.genre;
//document.getElementById("playlistTh").appendChild(clObj);
// -- set display to "block"”
//clObj.style.display = "block"”;
/*
Insert before
*/
/*var trRef = document.getElementById("playlistTb”)
trRef.insertBefore(clObj, trRef.childNodes[0@]);x*/
}
Explanation

The code in green is code that you have seen before

1. It creates a new data cell “TD” by using document.createElement()
2. Next it gives the newly created TD an id

3. Then it puts the newly created TD at the end.

The code in uses a “TOI” loop because we are creating a row for each song in the
playlist. So, if there are 2 songs of the genre “EDM”, the loop runs twice to make 2 rows to
match the 2 songs.

4. Write The HTML Code In Between ONLY write the code in
BLACK and PURPLE and position it under the code in

<button id = "popS0” onclick = "show_pso()">
Pop Songs Only
</button>

<button id = "allSongs" onclick = "show_all()">
Show All
</button>

<button id = "edmS0" onclick = "show_edm()">
EDM Songs
</button>

Explanation

This code will look very familiar to you. We are using event and event handler (ie. action).
The code in purple will be focused on. The event is “onclick” and this means a mouse click.
The action is on the right side of the assignment operator. The code below will be our
example.

<button id = "popS0” onclick = "show_pso()">
Pop Songs Only
</button>

The event is “onclick” and the action is “show_pso()”. This means that when we click on the
word “Pop Songs Only”, the action “show_pso()” is called. In our case, “show_pso()” is a JS
function that will do the work.

Next, we write the JS functions.

5. Write The JS Code In Between <script> </script>. WRITE ALL OF IT!!! Color
code is for explanation.

function show_pso()

alert("show_pso()");

// -- reset currPL and trackNum
currPL = [];
trackNum = 0;

// -- delete table
document.getElementById("playlistTb”).remove();
console.log("deleted table"”);

make_table("playlistTb”);

// -- make node
for(var i = 0; i < playlist.length; i++)
{
if(playlist[i]l=genre "Pop”)
{

make_a_clone(playlist[i].objId, playlist[i], "songRow_", i);
playlist[i].set_listener(i, playlist[i].extralnfo);
currPL.push(playlist[i]);

}

// -- update highlight
change_songs(trackNum, currPL);

}

Explanation — pso =» pop songs only

The code in orange was written in chapter 1 (make a new TABLE). The code in
was written in (make a new row, TR). The code in green was written in chapter 3,
make a new data cell, TD).

The “if” statement in red is the money maker because it is our filter. If we only want pop
songs, then all we have to do is check the genre. Remember that genre is a private attribute
of SongProfile. Since it is a private attribute, we must use the

which is the period, to access the private attribute.

We then use the comparison operator, which is the double equal sign (==), to check if the
genre is “Pop”. If TRUE, then we keep it. If FALSE, then we remove it.

6. Write The JS Code In Between <script> </script>. Color code is for
explanation.

function show_all()

{
alert("show_all()");

// -- reset currPL and trackNum
currPL [1;
trackNum = 0;

// -- delete table
document.getElementById("playlistTb”).remove();
console.log("deleted table”);

// -- make table
make_table("playlistTh”);

// -- make node
for(var i = 0; i < playlist.length; i++)
{

make_row("songRow_", i, "playlistTb"”);
make_a_clone(playlist[i].objId, playlist[il], "songRow_", i);
playlist[i].set_listener(i, playlist[i].extralnfo);

currPL.push(playlist[il]);
3

// -- update highlight
change_songs(trackNum, currPL);

3

Explanation

No “if” statement this time. Why? Because the function name is “show_all()”. Since we want
all of the songs, this means that no filter is needed and so no “if” statement is needed.

The code in orange was written in chapter 1 (make a new TABLE). The code in sky blue
was written in chapter 2 (make a new row, TR). The code in green was written in chapter 3,

make a new data cell, TD).

7. Write The JS Code In Between <script> </script>.

function show_edm()

{

alert("show_edm()");

// -- reset currPL and trackNum

currPL = [];

trackNum = 0;

// -- delete table

document.getElementById("playlistTb”).remove();

console.log("deleted table"”);

make_table("playlistTb”);

// -- make node

for(var i = 0; i < playlist.length; i++)

{

if(playlist[i].genre == "EDM")
{

make_row("songRow_", i, "playlistTb”);
make_a_clone(playlist[i].objId, playlist[i], "songRow_", i);
playlist[i].set_listener(i, playlist[i].extralnfo);
currPL.push(playlist[i]);

}

// -- update highlight

change_songs(trackNum, currPL);

}

Explanation — edm = electronic dance music

The code above is a near copy of Chapter 5 where we used an “if” statement as a filter. The
only different is the genre. In Chapter 5, we checked if the genre was “Pop”. In the code
above, we check if the genre is “EDM”.

The code in orange was written in chapter 1 (make a new TABLE). The code in

was written in

(make a new row, TR). The code in green was written in chapter 3,

make a new data cell, TD).

8. Write The CSS Code In Between <style> </style>

body
{
background-image: url(https://vuongducnguyen.com/images/rain.jpg);
}
Explanation

Here we are styling the body, which is the background of the entire website.

CSS Challenge

1. add background images to any element

background-image: url(https://vuongducnguyen.com/images/2150264-1920x1080-
artsfon.com-77312san-giorgio-maggiore-venice. jpg);

background-image: url(https://vuongducnguyen.com/images/mHouse. jpg);

background-image: url(https://vuongducnguyen.com/images/rain. jpg);

background-image: url(https://vuongducnguyen.com/images/140218140144-dark-sky---big-
bend-u-s--horizontal-large-gallery. jpeg);

background-image: url(https://vuongducnguyen.com/images/ziemaRoad. jpg);

Continue to next page

2. Pick 3 colors and style your MP3 player using the 3 colors that you selected by changing
a. background-color

b. color
c. font-size
d. border

#songInfo table#playlistTb tr td

{
padding : Opx Opx Opx Opx;
margin : Opx Opx Opx Opx;
width : 50px;
height : 50px;
/*background-color: #909090;x/
/*color : #d0dodo;x/
text-shadow: @Opx 1px 1lpx #808080;
font-weight: bold;

}

#textralnfo

{
position : absolute;
padding : Qpx Opx Opx Opx;
margin : Opx Opx Qpx Opx;
width 1 250px;
height : 150px;
background-color: #00ffbb;
box-shadow: 7px 5px 2px #fofefo;
border : 1px solid #a0a0ao;
text-shadow: @px 1px 1lpx #a0a0ao;
font-weight: bold;
color : #ffab0o;
font-family: Arial, Tahoma, Serif;

3

button

{
padding : 5px;
margin : Opx Opx Opx Opx;
border : 1px solid #a0a0ao;
background-color: #00ffbb;
font-size : 17px;
color : #ffab00;
text-shadow: @px 1px 1px #bobobo;
font-weight: bold;

}

Continue to next page

JS Challenge - you already have the filter ...
Change the background color based on the genre that the user selected.

If the genre is “ ”’, then do the following

1. Write JS code to link up with the HTML element whose id is “bTag”
2. change the backgroundColor to “ "
If the genre is “EDM”, then do the following

1. Write JS code to link up with the HTML element whose id is “bTag”
2. change the backgroundColor to “#0065007;

If the user click on the button “ ”, then do the following

1. write JS code to link up with the HTML element whose id is “bTag”
2. change the backgroundColor to * ”

10

