
1

JS 13 Valid Input Check

Project 10 - 12 focused on array manipulation. Project 13 also focuses on array manipulation.
Why is array manipulation so important? Because of how easy it is to apply in a real world
situation.

We cannot simply just enter and ask for resources, like access to email, calendar events,
music playlist, and etc. There are restrictions and these restrictions are used as security
measures. One basic, but important security measure, is authentication.

One of the most common ways to authenticate is to pass a test. In our case, the test is to enter
valid input. Pass or reject of data is based on rules, such as the data must have at least 8
characters or more. Rule-based computation simplifies our code into logical checks (ie. we
can now use "if-else" statements and logical AND or logical OR to decide pass or reject of the
data that was entered).

Once we do enter valid input, we are given access to resources, such as email. However, if we
enter invalid input, then we stay at the same spot.

In this session, we focus on valid input check by creating a login page with front side
validation. For simplicity, we will assume that the characters are combined together and there
are no spaces in between.

1. form validation 2. array manipulation 3. rule based computation

===

Continue to the next page for instructions

2

Introduction

User Name Rules
1. loop through and check that the username has

1.1 at least 8 characters long
1.2. at least 1 special character of %, ^, or # (keyword is OR)
1.3. user name can only have 11 or less characters. Count of 11 is ok, count of 12 and
beyond is invalid number of characters.
1.4. BUT can't have the character ~

Password Rules
2. loop through and check that the password has

2.1. at least 5 characters
2.2. has at least 2 special characters, either # or &

Login Rules
1. if username is valid, then change background color to blue

2. if password is valid, then change background color to green

3. if BOTH username and password are valid, then change background color to yellow

4. if point any of the points from 1 - 3 are false, then do the following

4.1. link JS code to the HTML element whose id is "msg"

4.2. use .innerHTML to display the data "Username or password format needs

refinement"
4.3. link JS code to the HTML element whose id is “bTag”. Next, change the style of the
backgroundColor to red

3

0. Logical AND (&&) compared to Logical OR (||)

Notice that we have use the logical operators AND (&&) and OR (||). The result of these
logical operators can be one of two values, TRUE or FALSE.

The logical AND (&&) is TRUE when ALL conditions are true. For example,

 var keyCode_1 = ‘A’; var keyCode_1 = ‘A’; var keyCode_1 = ‘A’; var keyCode_1 = ‘A’;
 var keyCode_2 = ‘C’; var keyCode_2 = ‘C’; var keyCode_2 = ‘C’; var keyCode_2 = ‘C’;

 if(keyCode_1 == ‘A’keyCode_1 == ‘A’keyCode_1 == ‘A’keyCode_1 == ‘A’ && keyCode_2 == ‘B’keyCode_2 == ‘B’keyCode_2 == ‘B’keyCode_2 == ‘B’)
 {
 securitySystem.openFrontDoor();

}

Explanation
In the above code, we declare a variable named keyCode_1 and put the value of ‘A’ into it.
Next, we declare another variable named keyCode_2 and put the value of ‘C’ into it. We are
doing a simple test of the system’s authentication program.

The security system will open the front door ONLY WHEN the keyCode_1 has a value of ‘A’
AND keyCode_2 has a value of ‘B’. The security system DOES NOT open the front door. Why?

Because the “if” statement is false.

1. Does keyCode_1 hold the value ‘A’? TRUE, because of var keyCode_1 = ‘A’;
2. Does keyCode_2 hold the value of ‘B’? FALSE, because of var keyCode_2 = ‘C’;

The logical AND (&&) is ONLY TRUE when ALL conditions are true. The “if” statement
needs both conditions to be TRUE BUT only one is true. This is why the logical AND (&&) is
false and the security system DOES NOT open the front door.

4

The logical OR (||) is TRUE when AT LEAST one condition is true. The logical OR only
needs one condition to be true for the result to be TRUE. For example,

 /* =====================================
 Rules:

1. if the sensor has a value of 0, then everything is ok.

2. however, if the sensor has a value of 1, then someone activated the sensor

*/

 var frontDS = 1; // -- frontDS is front door sensor
 var backDS = 0; // -- backDS is back door sensor

 if(frontDS == 1 || backD == 1)
 {
 securitySystem.soundAlarm();

}

 Explanation
In the above code, we declare one variable named frontDS and put the value of ‘1’
into it.

We also declare another variable named backDS and put the value of ‘0’ into it. We are
testing if the security system’s alarm will work.

The security system will sound the alarm when AT LEAST one of the sensors is

activated. In the “if” statement, the left side of the logical OR (||) is true and we only

need one side to be true. As a result, the alarm’s audio alert is activated.

5

1. This is the password check. Write JS code in between <script> </script>. Write ALL
OF IT!!!

 function pw_check()
 {
 var pwInput = document.getElementById("pw");

 // -- pwSB --> password search bar
 var pwSB = pwInput.value;

 var i = 0;
 var char5 = 0;
 var hashFound = 0;
 var ampFound = 0;

 if(pwSB.length >= 5)
 {
 char5 = 1;
 }

 for(; i < pwSB.length; i++)
 {
 if(pwSB[i] == "#")
 {
 hashFound = 1;
 }

 if(pwSB[i] == "&")
 {
 ampFound = 1;
 }
 }

 return (char5 && hashFound && ampFound);

 }

Explanation

This will look familiar. We are using the document.getElementById(“document.getElementById(“document.getElementById(“document.getElementById(“pwpwpwpw”)”)”)”) to link JS code with
the HTML element whose id is ““““pwpwpwpw”.”.”.”.

Remember that the search bar is an <input /> <input /> <input /> <input /> tag tag tag tag and the <input /> tag <input /> tag <input /> tag <input /> tag allows the user to
type in data to be sent to the JS code. How can JS code get the information that was typed

into the search bar by the user? All we have to do is put .value.value.value.value at the end.

 // -- pwSB --> password search bar

 var pwSB = pwInput.value;.value;.value;.value;

6

Where does .value.value.value.value come from? Look at the HTML code in between the

<body> </body> and you will see the below

 <input <input <input <input

 id = "pw"id = "pw"id = "pw"id = "pw"
 value = "" value = "" value = "" value = ""
 minlength = "20" minlength = "20" minlength = "20" minlength = "20"
 maxlength = "50"maxlength = "50"maxlength = "50"maxlength = "50"
 name = "pw"name = "pw"name = "pw"name = "pw"
 />/>/>/>

You already wrote this code, continue to the explanation below

 if(pwSB.length >= 5)
 {
 char5 = 1;char5 = 1;char5 = 1;char5 = 1;
 }

 for(; i < pwSB.length; i++)
 {
 if(pwSB[i] == "#")if(pwSB[i] == "#")if(pwSB[i] == "#")if(pwSB[i] == "#")
 {{{{
 hashFound = 1;hashFound = 1;hashFound = 1;hashFound = 1;
 }}}}

 if(pwSB[i] == "&")if(pwSB[i] == "&")if(pwSB[i] == "&")if(pwSB[i] == "&")
 {{{{
 ampFound = 1;ampFound = 1;ampFound = 1;ampFound = 1;
 }}}}
 }

 return (char5 && hashFound && ampFound);

Explanation

The password must be at least 5 characters in length. The first “if” statement checks if the

password has 5 or more characters. Once we have a password that is 5 or more characters in
length, we set the rule of char5 to 1 to mark it as complete.

Next, we have to loop through and check the two remaining rules, which are that the password
must have a hash tag (#) AND the ampersand character (&). These two special
characters can be in ANY POSITION within the array and this is why we must loop from
start to finish and run the same checks each time.

7

The “for” loop uses the variable i as the index (ie. the index is the marker of our current

position in the line) and then we check if we are at the end of the line with i < pwSB.length.

If we are not at the end of the line, we continue INSIDE the body of the “for” loop and run the

code in orange. Inside the body of the “for” loop, we use the index i and square brackets to

access a SINGLE data within the array.

We then use two “if” statements to check if our password has a hash tag or an ampersand.

*** The hash tag and ampersand can be in ANY POSITION within the array and
this is why we must loop through and check ***

Finally, we check if all rules are satisfied by using the logical AND operator and then giving
back the result by using the “return” keyword.

2. Write JS code in between <script> </script>. Write ALL OF IT!!! Color code is for the
explanation

function login_check()
{

 var pwCheck = pw_check();pw_check();pw_check();pw_check();
 alert("pwCheck: " + pwCheck);

 if(pwCheck if(pwCheck if(pwCheck if(pwCheck == 1 == 1 == 1 == 1))))
 {{{{

 if(pwCheck if(pwCheck if(pwCheck if(pwCheck == 1 == 1 == 1 == 1))))
 {{{{
 document.getElementById("bTag").style.backgroundColor = "#006500";

 document.getElementById("msg").innerHTML = "";
 }

 }

 else
 {
 document.getElementById("msg").innerHTML = "Username or password invalid";

 document.getElementById("bTag").style.backgroundColor = "#B22222";
 }

}

Explanation

Notice that the code in orange is the name of the function definition that you ALREADY wrote
in chapter 1. The main difference here is that we don’t have the word “function” and only have
the function name. So, it becomes a function call.

8

We are calling the function name to check if the user entered valid data. Next, we see two “if”
statements that are exactly the same, it is the code in green. This is partial code that will be
completed later on.

Remember that in chapter 1, we see the word “return”. Scroll back up to chapter 1 to confirm
that the word “return” is there. The word “return” means that the function is giving data back
to us. We then compare the data that the function gave to us with the value of 1.

If the function call gave the data of 1 back to us, then the password satisfied all of the
rules and we change the backgroundColor to green.

Else, the user did not enter data that satisfied all of the password rules. We alert the

user by changing the backgroundColor to red and using .innerHTML to update the

website to say "Username or password invalid";"Username or password invalid";"Username or password invalid";"Username or password invalid";

3. Write HTML code in between <body> </body>. ONLY write the code in SKY BLUE and Purple.

Also, position the code in between the BLACK code

 <label for="pw">Password</label> <label for="pw">Password</label> <label for="pw">Password</label> <label for="pw">Password</label>
 <input <input <input <input
 id = "pw"id = "pw"id = "pw"id = "pw"
 value = "" value = "" value = "" value = ""
 minlength = "20" minlength = "20" minlength = "20" minlength = "20"
 maxlength = "50"maxlength = "50"maxlength = "50"maxlength = "50"
 name = "pw"name = "pw"name = "pw"name = "pw"
 />/>/>/>

 <button <button <button <button
 id = "nEventB"id = "nEventB"id = "nEventB"id = "nEventB"
 onclick = "login_check()"onclick = "login_check()"onclick = "login_check()"onclick = "login_check()"
 > > > >
 Enter Data Enter Data Enter Data Enter Data
 </button></button></button></button>

 <<<<p id = "msg">p id = "msg">p id = "msg">p id = "msg">

 </p></p></p></p>

Explanation

This will look familiar. We are using the <button> <<button> <<button> <<button> <////button>button>button>button> to create a button. Next, we

attach the event "onclick" to the button. When we click on the word "Enter Data", the JS
function named "login_check()" is called.

9

This translate into ==> click on "Enter Data" and the action "login_check()" is called. Note
that the "login_check()" is a JS function.

This means that when we click on "Enter Data", HTML will send a signal to JS code. The JS
code will then execute the action "login_check()".

Click on green “Run” button. Go to the right side of the word “Password” and test it
by entering the data “vuong#&”. Next, press the “Enter Data” button.

The background color should turn green to indicate valid password.

Continue to the next page.

10

4. Write JS code in between <script> </script>. Write ALL OF IT!!! The color code splits it
up into readable sections. This is Username Check. Position the code right under the open
<script>

The test input for the user name check is: v5d5n^00

function u_name_check()function u_name_check()function u_name_check()function u_name_check()
{
 var uInput = document.getElementById("uName");
 var
 percentFound = 0,
 carrotFound = 0,
 hashFound = 0,
 complementFound = 0;

 uNameArr = uInput.value;

 alert("user entered: " + uNameArr[1]);

 var char8 = (uNameArr.length >= 8) ? true : false;
 var lim11 = (uNameArr.length <= 11) ? true : false;

 alert("char8: " + char8);

 var dat = 0;

 for(var i = 0; i < uNameArr.length; i++)
 {
 dat = uNameArr[i];

 if(dat == "%")
 {
 percentFound = 1;
 }

 if(dat == "^")
 {
 carrotFound = 1;
 alert("carrot found");
 }

 if(dat == "#")
 {
 hashFound = 1;
 }

 if(dat == "~")
 {
 complementFound = 1;
 }
 }

return ((((((((percentFound || carrotFound || hashFound)))) && !complementFound && char8 && lim11))));

}

11

Explanation

This code is very similar to the code that we wrote for password check. The username has

more rules and this is why we have more “ifififif” statements.

*** The percent, carrot, hash tag, and complement special characters can be in
ANY POSITION within the array and this is why we must loop through and check

At the end, we use the word “return” to give data back.

a. The return data is a 0 if the username DID NOT satisfy all of the username rules.
b. However, the return data is a 1 if the username DID satisfy all of the username

rules.

Continue to the next page

12

5. Go back and MODIFY the function definition “login_check()login_check()login_check()login_check()” to have it match the
code below. WRITE All of it. Color code is for explanation.

 function login_check()function login_check()function login_check()function login_check()
 {
 var uNameCheck = u_name_check();
 alert("uNameCheck: " + uNameCheck);

 var pwCheck = pw_check();
 alert("pwCheck: " + pwCheck);

 if(uNameCheck || pwCheck)
 {
 if(uNameCheck)if(uNameCheck)if(uNameCheck)if(uNameCheck)
 {{{{
 document.getElementById("bTdocument.getElementById("bTdocument.getElementById("bTdocument.getElementById("bTag").style.backgroundColor = "#000055";ag").style.backgroundColor = "#000055";ag").style.backgroundColor = "#000055";ag").style.backgroundColor = "#000055";

 document.getElementById("msg").innerHTML = "";document.getElementById("msg").innerHTML = "";document.getElementById("msg").innerHTML = "";document.getElementById("msg").innerHTML = "";
 }}}}

 if(pwCheck)if(pwCheck)if(pwCheck)if(pwCheck)
 {{{{
 document.getElementById("bTag").style.backgroundColor = "#006500";document.getElementById("bTag").style.backgroundColor = "#006500";document.getElementById("bTag").style.backgroundColor = "#006500";document.getElementById("bTag").style.backgroundColor = "#006500";

 document.getElementById("msg").innerHTML = "";document.getElementById("msg").innerHTML = "";document.getElementById("msg").innerHTML = "";document.getElementById("msg").innerHTML = "";
 }}}}

 if(uNameCheck && pwCheck)if(uNameCheck && pwCheck)if(uNameCheck && pwCheck)if(uNameCheck && pwCheck)
 {{{{
 document.getElementById("bTag").style.backgroundColor = "#DAA520";document.getElementById("bTag").style.backgroundColor = "#DAA520";document.getElementById("bTag").style.backgroundColor = "#DAA520";document.getElementById("bTag").style.backgroundColor = "#DAA520";

 document.getElementById("msg").innerHTML = "Open sesame!!!";document.getElementById("msg").innerHTML = "Open sesame!!!";document.getElementById("msg").innerHTML = "Open sesame!!!";document.getElementById("msg").innerHTML = "Open sesame!!!";
 }}}}

 }

 elseelseelseelse
 {{{{
 document.getElementById("msg").innerHTML = "Username or password invalid";document.getElementById("msg").innerHTML = "Username or password invalid";document.getElementById("msg").innerHTML = "Username or password invalid";document.getElementById("msg").innerHTML = "Username or password invalid";

 document.getElementById("bTag").style.backgroundColor = "#B22222";document.getElementById("bTag").style.backgroundColor = "#B22222";document.getElementById("bTag").style.backgroundColor = "#B22222";document.getElementById("bTag").style.backgroundColor = "#B22222";

 }}}}

 }

Explanation

This updated function definition of “login_check()”login_check()”login_check()”login_check()” includes the username check.

The code in blue checks if the username data entered by the user satisfies the username
rules. If so, then we change the background color to blue.

The code in green checks if the password data entered by the user satisfies the password
rules. If so, then we change the background color to green.

13

The code in gold checks if the password data AND the username data entered by the user
satisfies all rules (username and password). If so, then we change the background color to

gold and then use .innerHTML to update the website to say “Open sesame!!!";Open sesame!!!";Open sesame!!!";Open sesame!!!";

If ANY of the rules were violated, then the code in red executes. It will turn the background

color to red and then use .innerHTML to update the website to say "Username or password "Username or password "Username or password "Username or password

invalid";invalid";invalid";invalid";

