JS 11

Each person in line has a number and the first number is
ALWAYS 0. When the number in your possession is called, then it is your turn and you can
begin service.

There are many applications of an array. One simple example is a calculator. The numbers
that we enter on the keyboard are put into a line and this is how a calculator uses the numbers
in the line to calculate a result.

1. search bar 2. array manipulation 3. simple calculator
1. Write HTML code in between ONLY write the code in and PURPLE.
Next, position the code in and PURPLE AFTER the code in black

<p id = "ePTag">

</p>

onclick = "calc_avg()"

onclick = "find_highest()"

onclick = "find_lowest()"

Explanation

Remember that the <div> </div> is the "division" tag that is used to "divide the website
into sections". In the above code, we have 3 <div> tags and that means that there are at
least 3 sections.

In each section, we have a button that relates to a math operation and then a place holder for
the result.

Notice the code in purple. This is our event and action (ie. event handler). is
"onclick" and the action is a JS function. You will write the JS function in the next chapter.
This is important because it allows HTML to send a signal to JS code to execute an action.

For example, we have "onclick" attached to the word "Avg". When we click on
"Avg", HTML sends a signal to JS code. In this case, the signal is "calc_avg()" and itis a JS
function definition.

The HTML "onclick" is the event and the JS code is the action. We will write the JS code
next.

2. Write the JS Code in between <script> </script>. ONLY WRITE THE CODE IN
RED and position it after the variable declaration (ie. put the red code under the black code

).

var numArr [1;
var lowest 0;
var highest = 0;

function find_highest()

{
}
function find_lowest()
¢ var lowObj = document.getElementById("lowest”);
lowest = parseInt(numArr[0]);
for(var i = @; i < numArr.length; i++)
¢ if(lowest > parseInt(numArr[i]))
§owest = parseInt(numArr[i]);
) }
lowObj.innerHTML = lowest;
}
function calc_avg()
¢ var sum = 0;
for(var i = @0; i < numArr.length; i++)
¢ sum += parseInt(numArr[i]);
}
alert("sum: " + sum);
var avgObj = document.getElementById("average");
alert("len of numArr: " + numArr.length);
avgObj.innerHTML = sum/numArr.length;
}
Explanation

The 3 function definitions match what we wrote in HTML. For example, the JS function name
"calc_avg ()" matches the HTML code. Look below and confirm that on" " will
send a signal to JS code to call the action "calc_avg()".

HTML Code

<div

class = "mathBlock”

>

<button

id = "avgB"
onclick = "calc_avg()
>

"

Avg

</button>

<p

id = "average”
class = "result”
>

average

</p>

</div>

function calc_avg()

JS Code

function calc_avg()

{

var sum = @;

for(var i = @; i < numArr.length; i++)

{
}

sum += parseInt{ numArr[i]);

alert("sum: " + sum);
var avgObj = document.getElementById("average")

alert("len of numArr: " + numArr.length);
avgObj.innerHTML = sum/numArr.length;

var avgObj = document.getElementById("average");

alert("len of numArr: " + numArr.length);

{
var sum = 0;
for(var i = @; i < numArr.length; i++)
{
sum += parseInt(numArr[i]);
}
alert("sum: " + sum);
avgObj.innerHTML = sum/numArr.length;
}
Explanation

The function definition calc_avg() loops through the array and adds the numbers together.
Remember that we are using a search bar to enter the number. This is important because a
search bar sees the input as letters (ie. characters) instead of numbers.

For example, if we type in 5 and then 3 into the search bar and then tell the computer to add
the two numbers, THE RESULT IS NOT 8. Since a search bar sees letters, the result is “53”.
Why? Javascript uses the plus operator (+) as a math operation OR the concatenation
operation. Concatenation means to join or combine together.

How does Javascript know which one to use, math operator or concatenation operator? The
data will determine the operator to use.

So, if we say “5” + “5”, the two operands are letters and so Javascript uses the
concatenation operator.

However, if we convert the letters into numbers using parselInt(), it would be the number 5

+ number 5 and Javascript uses the math operator for addition.

Looking at the code above,

sum += parseInt(numArr[i]);
Notice that we use the square bracket and then use a variable called 1 as a digital key to get
the data at that index.

Next, we use += to add the numbers together. We add numbers together one at a time until we
get the total sum.

3. Write CSS code in between <style> </style>. Change the style of the blocks below to
be any style you like.

body

{
background-color: #006400;

}

p#ePTag

{
margin : 10px Opx 20px Opx;
padding : Opx Qpx OQpx 0Opx;
color . #ffd700;
font-size : 19px;

3

.mathBlock

{
margin : Opx Opx 20px Opx;
border : 1px solid #c0@c0oco;
text-align: center;
background-color: #a0a0a0;
background-image: url(https://vuongducnguyen.com/images/wLand.png);

3

JS Challenge 1.
1. write the JS function to keep track of the highest number. The function definition is
already there. All that is needed is to write the code in between the curly braces

JS Challenge 2.

1. notice that if we enter invalid data, such as "...", " ", or "hi", the our simple calculator STILL
accepts invalid data. This is not what we want.

2. we must filter the data. For simplicity, the accepted data are numbers between the range -50
and 50.

3. when the user clicks on the button "Enter Data", the function "iDV()" is called.

3.0. use parselnt() to convert a representation into a number
3.1. check if the data is between -50 and 50.

if the check is true, then continue with the computation

else, alert the user with the message "

